留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机器学习预测IAV和SARS-CoV-2感染引起心脏并发症中的共同靶点基因及H1N1感染模型验证

廖元盛 李恒 廖芸 胡云光 殷安国 孔美君 刘龙丁 张莹

廖元盛, 李恒, 廖芸, 胡云光, 殷安国, 孔美君, 刘龙丁, 张莹. 机器学习预测IAV和SARS-CoV-2感染引起心脏并发症中的共同靶点基因及H1N1感染模型验证[J]. 昆明医科大学学报, 2025, 46(5): 75-88. doi: 10.12259/j.issn.2095-610X.S20250509
引用本文: 廖元盛, 李恒, 廖芸, 胡云光, 殷安国, 孔美君, 刘龙丁, 张莹. 机器学习预测IAV和SARS-CoV-2感染引起心脏并发症中的共同靶点基因及H1N1感染模型验证[J]. 昆明医科大学学报, 2025, 46(5): 75-88. doi: 10.12259/j.issn.2095-610X.S20250509
Yuansheng LIAO, Heng LI, Yun LIAO, Yunguang HU, Anguo YIN, Meijun KONG, Longding LIU, Ying ZHANG. Prediction of Shared Target Genes in Cardiac Complications Induced by IAV and SARS-CoV-2 Using Machine Learning and Validation in H1N1 Infection Models[J]. Journal of Kunming Medical University, 2025, 46(5): 75-88. doi: 10.12259/j.issn.2095-610X.S20250509
Citation: Yuansheng LIAO, Heng LI, Yun LIAO, Yunguang HU, Anguo YIN, Meijun KONG, Longding LIU, Ying ZHANG. Prediction of Shared Target Genes in Cardiac Complications Induced by IAV and SARS-CoV-2 Using Machine Learning and Validation in H1N1 Infection Models[J]. Journal of Kunming Medical University, 2025, 46(5): 75-88. doi: 10.12259/j.issn.2095-610X.S20250509

机器学习预测IAV和SARS-CoV-2感染引起心脏并发症中的共同靶点基因及H1N1感染模型验证

doi: 10.12259/j.issn.2095-610X.S20250509
基金项目: 云南省科技计划资助项目(202202AA100001;202201AT070239;202305AD160006)
详细信息
    作者简介:

    廖元盛(1997~),男,四川阆中人,在读硕士研究生,主要从事甲型流感病毒的感染与免疫研究工作

    通讯作者:

    刘龙丁,E-mail:longdingl@gmail.com

    张莹,E-mail:cherryzhang629@126.com

  • 中图分类号: R373.4

Prediction of Shared Target Genes in Cardiac Complications Induced by IAV and SARS-CoV-2 Using Machine Learning and Validation in H1N1 Infection Models

  • 摘要:   目的  预测并初步验证甲型流感病毒(influenza A virus,IAV)和严重急性呼吸综合征冠状病毒2型(severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)感染引发心脏并发症的共同潜在关键基因。  方法  基于GEO(gene expression omnibus)数据库获取心脏并发症差异表达基因(differentially expressed genes,DEGs),采用分层交集策略,首先分别将心脏并发症相关DEGs与两个独立来源的病毒相关基因集(包括GeneCards中与IAV感染相关的3454个人类基因,以及Human Protein Atlas中与SARS-CoV-2相互作用的333个人类蛋白质编码基因)进行交集分析,随后再将这两个交集的结果进行第二轮交集,进一步确定枢纽基因。采用Lasso回归(lasso regression)、随机森林算法(random forest,RF)和支持向量机算法(support vector machine,SVM)3种机器学习算法对枢纽基因进行筛选。本研究主要采用H1N1病毒感染人心肌细胞系(AC16)和IFITM3-/-基因敲除小鼠模型,对预测基因的表达变化进行体外和体内验证。  结果  对3个数据库进行生物信息学分析,筛选出22个枢纽基因。使用3种机器学习算法对枢纽基因进行评估,最终筛选出5个共同的关键基因。随后,通过H1N1感染体外培养的人心肌细胞系(AC16),观察到5种基因的转录水平均呈现出动态变化趋势(P < 0.05)。而利用H1N1感染IFITM3-/-基因敲除小鼠的体内实验结果与体外实验结果一致,亦证实这5种基因转录水平均发生动态变化(P < 0.05)。  结论  通过结合生物信息学分析与机器学习算法,本研究筛选出5个与IAV和SARS-CoV-2感染引起心脏并发症相关的共同关键基因,分别为ACE2、TBK1、NUP210、PUSL1和MEPCE。进一步通过H1N1感染模型的体内和体外实验验证,确认了这些基因均与IAV感染引起的心脏并发症相关。
  • 图  1  心脏并发症和正常心脏组织的差异表达基因

    A:差异基因火山图,红色表示上调的差异表达基因,紫色表示的下调差异表达基因;B:差异基因热图,红色表示上调的差异表达基因,紫色表示下调的差异表达基因。

    Figure  1.  Differentially expressed genes between cardiac complications and normal cardiac tissue

    图  2  差异表达基因的GO富集分析、KEGG信号通路分析

    A:上调DEGs的GO功能类别;B:下调DEGs的GO功能类别;C:上调DEGs的KEGG信号通路类别;D:下调DEGs的KEGG信号通路类别。

    Figure  2.  GO enrichment analysis and KEGG pathway analysis of differentially expressed genes

    图  3  筛选甲型流感感染和SARS-CoV-2病毒感染与心脏并发症相关的枢纽基因(韦恩图)

    Figure  3.  Identification of hub genes associated with cardiac complications in influenza A virus and SARS-CoV-2 infections (venn diagram)

    图  4  机器学习筛选特征基因

    A,B:Lasso回归;C:SVM算法分析;D:RF算法分析;E:3种算法的结果交集情况(韦恩图)。

    Figure  4.  Feature gene selection using machine learning

    图  5  体外验证H1N1病毒感染人心肌细胞后特征基因的转录表达水平变化

    A:5个特征基因的转录水平变化;B:感染后细胞病毒载量变化;数据以3次独立重复实验的平均值±标准差(SD)表示;各组各时间点数据与对照组(未感染流感病毒的心肌细胞)进行比较分析,*P < 0.05,**P < 0.01。

    Figure  5.  In vitro validation of transcriptional expression changes of feature genes following H1N1 virus infection in human cardiomyocytes

    图  6  H1N1感染IFITM3-/-基因敲除小鼠的生理及病理学响应

    A:模型小鼠实验设计;B: IFITM3-/-基因敲除小鼠基因型鉴定;C:模型小鼠14天内体重变化率;Non-Infected组为未感染组小鼠,Infected组为感染组小鼠;数据以3次独立重复实验的平均值±标准差(SD)表示;D:实验取材组小鼠感染后肺部及心组织病理变化,蓝色箭头指向炎性细胞浸润区域,绿色箭头指向毛细血管充血区域,标尺刻度为200 µm。

    Figure  6.  Physiological and pathological responses to H1N1 infection in IFITM3 knockout mice

    图  7  体内验证H1N1病毒感染IFITM3-/-基因敲除小鼠后特征基因的转录表达水平变化

    A:肺组织5个特征基因的转录水平变化;B:肺组织中病毒载量变化;C:心组织中5个特征基因的转录水平变化;数据以3次独立重复实验的平均值±标准差(SD)表示;各组各时间点数据与对照组(未感染流感病毒的IFITM3-/-基因敲除小鼠)进行比较分析,*P < 0.05,**P < 0.01。

    Figure  7.  In vivo validation of transcriptional expression changes of feature genes following H1N1 virus infection in IFITM3 knockout mice

    表  1  PCR引物序列

    Table  1.   PCR primer sequences

    Gene nameSequence (5' to 3'Length
    (bp)
    ACE2(h)-FCGAAGCCGAAGACCTGTTCTA21
    ACE2(h)-RGGGCAAGTGTGGACTGTTCC20
    TBK1(h)-FTGGGTGGAATGAATCATCTACGA23
    TBK1(h)-RGCTGCACCAAAATCTGTGAGT21
    NUP210(h)-FGCACTATCTACGTGGTCGAAC21
    NUP210(h)-RCCTCGAAGAACTCAGCAGGAA21
    PUSL1(h)-FCGTCCCGGACCTACCTGTA19
    PUSL1(h)-RCCTGCATGGCGACCATATCC20
    MEPCE(h)-FCCGCCAAAACATCCGACACTA21
    MEPCE(h)-RCCCGTGACGAAGACAACATTG21
    GAPDH(h)-FTGTGGGCATCAATGGATTTGG20
    GAPDH(h)-RACACCATGTATTCCGGGTCAAT21
    ACE2(m)-FGGAGCCTGTCAGGGCTACT19
    ACE2(m)-RCCACAAGAATCTGTACCTTCTGC23
    TBK1(m)-FACTGGTGATCTCTATGCTGTCA22
    TBK1(m)-RTTCTGGAAGTCCATACGCATTG22
    NUP210(m)-FGGGCGCACGATGTTCAGAA19
    NUP210(m)-RCACCACCAGGTCGAAATGGG20
    PUSL1(m)-FGCTCCTGGCCTAATCAACTG20
    PUSL1(m)-RCAGACTGGAAGGCACTAAAATCA23
    MEPCE(m)-FGACCCGCTCAGTCTCAACAC20
    MEPCE(m)-RGGCGTTGCTATCATTCCCTCC21
    GAPDH(m)-FAGGTCGGTGTGAACGGATTTG21
    GAPDH(m)-RTGTAGACCATGTAGTTGAGGTCA23
    FLUAM(m)-1FAAGACCAATCCTGTCACCTCTGA23
    FLUAM(m)-1RCAAAGCGTCTACGCTGCAGTCC22
    FLUAM(m)-1PTTTGTGTTCACGCTCACCGT20
    下载: 导出CSV
  • [1] Vos T,Lim S S,Abbafati C,et al. Global burden of 369 diseases and injuries in 204 countries and territories,1990-2019: A systematic analysis for the global burden of disease study 2019[J]. Lancet,2020,396(10258):1204-1222. doi: 10.1016/S0140-6736(20)30925-9
    [2] Zhou P,Yang X L,Wang X G,et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. Nature,2020,579(7798):270-273. doi: 10.1038/s41586-020-2012-7
    [3] Jefferson T,Dooley L,Ferroni E,et al. Physical interventions to interrupt or reduce the spread of respiratory viruses[J]. Cochrane Database Syst Rev,2023,1(1):CD006207.
    [4] Sun H,Xiao Y,Liu J,et al. Prevalent eurasian avian-like H1N1 swine influenza virus with 2009 pandemic viral genes facilitating human infection[J]. Proc Natl Acad Sci U S A,2020,117(29):17204-17210. doi: 10.1073/pnas.1921186117
    [5] Protonotarios A,Marelli-Berg F. Influenza-associated cardiac injury: a disease of the cardiac conduction system?[J]. Cardiovasc Res,2021,117(3):643-644. doi: 10.1093/cvr/cvaa174
    [6] Ramadan M S,Bertolino L,Marrazzo T,et al. Cardiac complications during the active phase of COVID-19: review of the current evidence[J]. Intern Emerg Med,2021,16(8):2051-2061. doi: 10.1007/s11739-021-02763-3
    [7] Ouranos K,Vassilopoulos S,Vassilopoulos A,et al. Cumulative incidence and mortality rate of cardiovascular complications due to laboratory-confirmed influenza virus infection: a systematic review and meta-analysis[J]. Rev Med Virol,2024,34(1):e2497. doi: 10.1002/rmv.2497
    [8] Dhakal B P,Sweitzer N K,Indik J H,et al. SARS-CoV-2 infection and cardiovascular disease: COVID-19 heart[J]. Heart Lung Circ,2020,29(7):973-987. doi: 10.1016/j.hlc.2020.05.101
    [9] Yang W,Liu X,Wang X. The immune system of chicken and its response to H9N2 avian influenza virus[J]. Vet Q,2023,43(1):1-14.
    [10] López-Valiñas Á,Valle M,Wang M,et al. Vaccination against swine influenza in pigs causes different drift evolutionary patterns upon swine influenza virus experimental infection and reduces the likelihood of genomic reassortments[J]. Front Cell Infect Microbiol,2023,13:1111143. doi: 10.3389/fcimb.2023.1111143
    [11] Gouma S,Anderson E M,Hensley S E. Challenges of making effective influenza vaccines[J]. Annu Rev Virol,2020,7(1):495-512. doi: 10.1146/annurev-virology-010320-044746
    [12] Skaarup K G,Modin D,Nielsen L,et al. Influenza and cardiovascular disease pathophysiology: strings attached[J]. Eur Heart J Suppl,2023,25(Suppl A):A5-A11.
    [13] World Health Organization. Number of COVID-19 cases reported to WHO[EB/OL]. (2025-01-05)[2025-01-21]. https://data.who.int/dashboards/co vid19/cases?n=c.
    [14] Jackson C B,Farzan M,Chen B,et al. Mechanisms of SARS-CoV-2 entry into cells[J]. Nat Rev Mol Cell Biol,2022,23(1):3-20.
    [15] World Health Organization. Number of COVID-19 cases reported to WHO[EB/OL]. (2025-01-05)[2025-01-21]. https://data.who.int/dashboards/co vid19/cases?n=c.
    [16] Kopańska M,Barnaś E,Błajda J,et al. Effects of SARS-CoV-2 inflammation on selected organ systems of the human body[J]. Int J Mol Sci,2022,23(8):4178. doi: 10.3390/ijms23084178
    [17] Wu L,O'kane A M,Peng H,et al. SARS-CoV-2 and cardiovascular complications: from molecular mechanisms to pharmaceutical management[J]. Biochem Pharmacol,2020,178:114114. doi: 10.1016/j.bcp.2020.114114
    [18] Ogah O S,Umuerri E M,Adebiyi A,et al. SARS-CoV 2 infection (Covid-19) and cardiovascular disease in Africa: health care and socio-economic implications[J]. Glob Heart,2021,16(1):18. doi: 10.5334/gh.829
    [19] Xie Y,Xu E,Bowe B,et al. Long-term cardiovascular outcomes of COVID-19[J]. Nat Med,2022,28(3):583-590. doi: 10.1038/s41591-022-01689-3
    [20] Al-Aly Z,Davis H,Mccorkell L,et al. Long COVID science,research and policy[J]. Nat Med,2024,30(8):2148-2164. doi: 10.1038/s41591-024-03173-6
    [21] Liu P P,Blet A,Smyth D,et al. The science underlying COVID-19: implications for the cardiovascular system[J]. Circulation,2020,142(1):68-78. doi: 10.1161/CIRCULATIONAHA.120.047549
    [22] Bowe B,Xie Y,Al-Aly Z. Acute and postacute sequelae associated with SARS-CoV-2 reinfection[J]. Nat Med,2022,28(11):2398-2405. doi: 10.1038/s41591-022-02051-3
    [23] Wang D,Hu B,Hu C,et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan,China[J]. JAMA,2020,323(11):1061-1069. doi: 10.1001/jama.2020.1585
    [24] Wang E Y,Hulme O L,Khurshid S,et al. Initial precipitants and recurrence of atrial fibrillation[J]. Circ Arrhythm Electrophysiol,2020,13(3):e007716. doi: 10.1161/CIRCEP.119.007716
    [25] Yue H,Zhang M,Xing L,et al. The epidemiology and clinical characteristics of co-infection of SARS-CoV-2 and influenza viruses in patients during COVID-19 outbreak[J]. J Med Virol,2020,92(11):2870-2873. doi: 10.1002/jmv.26163
    [26] Brochet P,Ianni B M,Laugier L,et al. Epigenetic regulation of transcription factor binding motifs promotes Th1 response in Chagas disease cardiomyopathy[J]. Front Immunol,2022,13:958200. doi: 10.3389/fimmu.2022.958200
    [27] Kenney A D,Mcmichael T M,Imas A,et al. IFITM3 protects the heart during influenza virus infection[J]. Proc Natl Acad Sci U S A,2019,116(37):18607-18612. doi: 10.1073/pnas.1900784116
    [28] Pannucci P,Jefferson S R,Hampshire J,et al. COVID-19-induced myocarditis: pathophysiological roles of ACE2 and toll-like receptors[J]. Int J Mol Sci,2023,24(6):5374. doi: 10.3390/ijms24065374
    [29] Chen L,Hao G. The role of angiotensin-converting enzyme 2 in coronaviruses/influenza viruses and cardiovascular disease[J]. Cardiovasc Res,2020,116(12):1932-1936. doi: 10.1093/cvr/cvaa093
    [30] Bailey A L,Dmytrenko O,Greenberg L,et al. SARS-CoV-2 infects human engineered heart tissues and models COVID-19 myocarditis[J]. JACC Basic Transl Sci,2021,6(4):331-345. doi: 10.1016/j.jacbts.2021.01.002
    [31] Schweitzer K S,Crue T,Nall J M,et al. Influenza virus infection increases ACE2 expression and shedding in human small airway epithelial cells[J]. Eur Respir J,2021,58(1):2003988. doi: 10.1183/13993003.03988-2020
    [32] Wu Q,Kumar N,Lafuse W P,et al. Influenza A virus modulates ACE2 expression and SARS-CoV-2 infectivity in human cardiomyocytes[J]. iScience,2022,25(12):105701. doi: 10.1016/j.isci.2022.105701
    [33] Bai L,Zhao Y,Dong J,et al. Coinfection with influenza A virus enhances SARS-CoV-2 infectivity[J]. Cell Res,2021,31(4):395-403. doi: 10.1038/s41422-021-00473-1
    [34] Sui L,Zhao Y,Wang W,et al. SARS-CoV-2 membrane protein inhibits type I interferon production through ubiquitin-mediated degradation of TBK1[J]. Front Immunol,2021,12:662989. doi: 10.3389/fimmu.2021.662989
    [35] Wang X,Jiang L,Wang G,et al. Influenza A virus use of BinCARD1 to facilitate the binding of viral NP to importin α7 is counteracted by TBK1-p62 axis-mediated autophagy[J]. Cell Mol Immunol,2022,19(10):1168-1184. doi: 10.1038/s41423-022-00906-w
    [36] Sawaged S,Mota T,Piplani H,et al. TBK1 and GABARAP family members suppress Coxsackievirus B infection by limiting viral production and promoting autophagic degradation of viral extracellular vesicles[J]. PLoS Pathog,2022,18(8):e1010350. doi: 10.1371/journal.ppat.1010350
    [37] Hagan R S,Torres-Castillo J,Doerschuk C M. Myeloid TBK1 signaling contributes to the immune response to influenza[J]. Am J Respir Cell Mol Biol,2019,60(3):335-345. doi: 10.1165/rcmb.2018-0122OC
    [38] Sakuma S,Zhu E Y,Raices M,et al. Loss of Nup210 results in muscle repair delays and age-associated alterations in muscle integrity[J]. Life Sci Alliance,2022,5(3):e202101216. doi: 10.26508/lsa.202101216
    [39] Ackerman E E,Shoemaker J E. Network controllability-based prioritization of candidates for SARS-CoV-2 drug repositioning[J]. Viruses,2020,12(10):1087. doi: 10.3390/v12101087
    [40] Addetia A,Lieberman N a P,Phung Q,et al. SARS-CoV-2 ORF6 disrupts bidirectional nucleocytoplasmic transport through interactions with Rae1 and Nup98[J]. mBio,2021,12(2):e00065-00021.
    [41] Şenbaş Akyazi B,Pirinçal A,Kawaguchi A,et al. Interaction of influenza A virus NS2/NEP protein with the amino-terminal part of Nup214[J]. Turk J Biol,2020,44(2):82-92. doi: 10.3906/biy-1909-49
    [42] Genecards. PUSL1 Gene[EB/OL]. [2025-04-15]. https://www.genecards.org/cgi-bin/carddisp.pl?gene=PUSL1.
    [43] Shen S,Zhang L S. The regulation of antiviral innate immunity through non-m(6)A RNA modifications[J]. Front Immunol,2023,14:1286820. doi: 10.3389/fimmu.2023.1286820
    [44] Morais P,Adachi H,Yu Y T. The critical contribution of pseudouridine to mRNA COVID-19 vaccines[J]. Front Cell Dev Biol,2021,9:789427. doi: 10.3389/fcell.2021.789427
    [45] Wang Y,Traugot C M,Bubenik J L,et al. N(6)-methyladenosine in 7SK small nuclear RNA underlies RNA polymerase II transcription regulation[J]. Mol Cell,2023,83(21):3818-3834. doi: 10.1016/j.molcel.2023.09.020
    [46] Li Z,Fang X,Zhao B,et al. Liquid-liquid phase separation of LARP7 restrains HIV-1 replication[J]. EMBO Rep,2025,26(8):1935-1956. doi: 10.1038/s44319-025-00421-9
  • [1] 章敏慧, 尹维丹, 胡竹林, 黎铧, 张利伟, 任玉玲.  新型冠状病毒感染相关急性黄斑神经视网膜病变的临床特征及预后, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20250412
    [2] 孙艳红, 陈瑶瑶, 周洁楠, 张美玲, 刘照生, 赵晓南.  云南省第4例人感染欧亚类禽H1N1亚型猪流感病毒分子流行病学调查, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20250404
    [3] 廉坤, 李咏梅, 施诚龙, 陈怡兰, 张磊, 杨薇, 许秀峰.  综合生物信息学方法识别精神分裂症状中关键线粒体自噬基因, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20250104
    [4] 曾慧娟, 田波, 袁红伶, 何杰, 李冠羲, 茹国佳, 许敏, 詹东.  机器学习算法构建慢性肾脏病伴高血压或糖尿病的预测模型, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240315
    [5] 姚利璇, 牛奔, 岳伟, 周文林, 张雅婷.  丙型肝炎病毒感染和2型糖尿病的相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210815
    [6] 杨云辉, 何波, 游顶云, 杨俊涛, 高茜.  CT在早期预测新型冠状病毒感染不同临床分型的应用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210524
    [7] 谭力, 李明, 孙宇星, 张桢, 甘政艳.  2 260例急性下呼吸道感染患儿人鼻病毒分子流行病学特征, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20201233
    [8] 乐小婧, 陈婕, 张帆, 李会芳.  代谢综合征与2型糖尿病的相关研究进展, 昆明医科大学学报.
    [9] 袁宇, 李翔.  2019型冠状病毒病之心肌损害述评, 昆明医科大学学报.
    [10] 赵晓南.  A(H3N2)亚型流感病毒R292K和N294S突变位点TaqMan-MGB探针检测方法的建立, 昆明医科大学学报.
    [11] 王玉涛.  臭灵丹乙醇提取物体外抑制甲1型流感病毒实验研究, 昆明医科大学学报.
    [12] 李凯.  云南省甲型H1N1流感疫苗上市后的安全性观察, 昆明医科大学学报.
    [13] 汪毅.  双向Glenn术在肺血减少型复杂先天性心脏病中的应用, 昆明医科大学学报.
    [14] 张旭梅.  妊娠合并心脏病采用无痛人流终止早孕的临床疗效评价, 昆明医科大学学报.
    [15] 刘德胜.  傣族、汉族非综合征型耳聋患者GJB2基因分析, 昆明医科大学学报.
    [16] 严小宏.  CPAP对2型糖尿病合并阻塞性睡眠呼吸暂停综合征治疗观察, 昆明医科大学学报.
    [17] 重症及危重症甲型H1N1流感146例病例的回顾性分析, 昆明医科大学学报.
    [18] 感冒消炎片治疗儿童甲型H1N1流感临床试验评价, 昆明医科大学学报.
    [19] 陈伟.  重症甲型H1N1流感患者的胸部X线和CT特征分析, 昆明医科大学学报.
    [20] 体外膜肺氧合与呼吸机治疗重症甲型H1N1流感病毒性肺炎体会, 昆明医科大学学报.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  200
  • HTML全文浏览量:  77
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-02
  • 刊出日期:  2025-05-30

目录

    /

    返回文章
    返回