留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BMD、T值、HU值和改良VBQ评分预测胸腰椎脆性骨折的效能分析

徐世鑫 严荣爽 潘呈 罗洋 费德锐 李全 张颖

徐世鑫, 严荣爽, 潘呈, 罗洋, 费德锐, 李全, 张颖. BMD、T值、HU值和改良VBQ评分预测胸腰椎脆性骨折的效能分析[J]. 昆明医科大学学报, 2025, 46(8): 58-64. doi: 10.12259/j.issn.2095-610X.S20250808
引用本文: 徐世鑫, 严荣爽, 潘呈, 罗洋, 费德锐, 李全, 张颖. BMD、T值、HU值和改良VBQ评分预测胸腰椎脆性骨折的效能分析[J]. 昆明医科大学学报, 2025, 46(8): 58-64. doi: 10.12259/j.issn.2095-610X.S20250808
Shixin XU, Rongshuang YAN, Cheng PAN, Yang LUO, Derui FEI, Quan LI, Ying ZHANG. Efficacy Analysis of BMD,T-scores,HU Values,and Modified VBQ Scores in Predicting Thoracolumbar Fragility Fractures[J]. Journal of Kunming Medical University, 2025, 46(8): 58-64. doi: 10.12259/j.issn.2095-610X.S20250808
Citation: Shixin XU, Rongshuang YAN, Cheng PAN, Yang LUO, Derui FEI, Quan LI, Ying ZHANG. Efficacy Analysis of BMD,T-scores,HU Values,and Modified VBQ Scores in Predicting Thoracolumbar Fragility Fractures[J]. Journal of Kunming Medical University, 2025, 46(8): 58-64. doi: 10.12259/j.issn.2095-610X.S20250808

BMD、T值、HU值和改良VBQ评分预测胸腰椎脆性骨折的效能分析

doi: 10.12259/j.issn.2095-610X.S20250808
基金项目: 国家自然科学基金(82060414);“兴滇英才支持计划”医疗卫生人才项目(XDYC-MY-2022-0026)
详细信息
    作者简介:

    徐世鑫(1999~),男,四川凉山人,在读硕士研究生,主要从事脊柱外科临床工作

    通讯作者:

    张颖,E-mail:zhangyingynkm@126.com

  • 中图分类号: R683.2

Efficacy Analysis of BMD,T-scores,HU Values,and Modified VBQ Scores in Predicting Thoracolumbar Fragility Fractures

  • 摘要:   目的  研究胸腰椎骨折患者DEXA(dual-energy X-ray absorptiometry,DEXA)所测BMD(bone mineral density,BMD)、T值(T-score)、腰椎HU值(hounsfield unit,HU)和改良VBQ (vertebral body quality,VBQ)评分的差异,并分析四者间的相关性以及BMD 、T值、腰椎HU值和改良VBQ评分在预测胸腰椎骨折的效能特点。  方法  收集2022年1月至2025年3月在昆明医科大学第二附属医院骨科行住院治疗的胸腰椎脆性骨折患者。将符合纳入标准的132例患者分为骨折组(n = 63)与非骨折组(n = 69),并分别在DEXA上记录L1~L4椎体BMD、T值,腰椎CT测量HU值,腰椎MRI(magnetic resonance imaging,MRI)测量计算VBQ评分。组间比较采用独立样本t检验,BMD、T值、HU值、改良VBQ评分四者之间的相关性采用Pearson's相关性检验,并用受试者工作曲线(receiver-operator curve,ROC)分析其预测胸腰椎骨折的效能。  结果  骨折组患者中L1~L4的平均BMD、T值、HU值均低于非骨折组,而改良VBQ评分高于非骨折组,两组之间均存在显著差异(P < 0.001 )。相关性分析中,L1~L4的BMD、T值与L1~L4 HU值呈显著正相关(P < 0.001),L1~L4的BMD、T值、L1~L4HU值三者与改良VBQ评分之间呈显著负相关(P < 0.001)。L1~L4平均T值、BMD 、HU值和改良VBQ评分预测胸腰椎骨折的AUC值分别为0.826、0.836、0.759、0.875,其分别对应最佳阈值为T值(-1.65)、BMD(0.836)、HU值(68.4)、改良VBQ评分(3.01)。  结论  L1~L4椎体BMD、T值、HU值和改良VBQ评分四者之间相关性显著,都可以作为预测胸腰椎骨折效能的指标,其中改良VBQ评分预测表现最好,是良好的椎体骨质量评估辅助手段。
  • 图  1  改良VBQ评分、HU值感兴趣区域

    A:改良VBQ评分感兴趣区域;B:L1~L4节段CT矢状面定位线;C:L1节段HU值;D:L2节段HU值;E:L3节段HU值;F:L4节段HU值。

    Figure  1.  Regions of interest for modified VBQ scores and Hounsfield unit

    图  2  L1~L4平均T值、BMD 、HU值和改良VBQ评分预测胸腰椎骨折的ROC曲线

    Figure  2.  Receiver operating characteristic (ROC) curves demonstrating the predictive performance of L1~L4 mean T-scores,BMD,HU,and modified VBQ scores for thoracolumbar fractures

    表  1  骨折组与非骨折组患者的一般资料比较($\bar x \pm s $)

    Table  1.   Comparison of general information of patients in the fracture group and non-fracture group ($\bar x \pm s $)

    骨折组
    n=63)
    非骨折组
    n=69)
    t P
    男性 17/63 25/69
    女性 46/63 44/69
    年龄(岁) 71.03 ± 8.49 69.41 ± 5.16 1.315 0.192
    BMI(g/cm2 23.31 ± 3.31 24.30 ± 3.24 −1.733 0.086
    L1~L4 BMD 0.79 ± 0.15 1.01 ± 0.15 −8.485 <0.01*
    L1~L4 T值 −2.61 ± 1.20 −0.70 ± 1.24 −8.996 <0.01*
    L1~L4 HU值 64.63 ± 21.26 91.27 ± 29.67 −5.965 <0.01*
    改良VBQ评分 3.39 ± 0.60 2.72 ± 0.39 7.604 <0.01*
      *P < 0.05。
    下载: 导出CSV

    表  2  L1~L4平均BMD 、T值、 HU值和改良VBQ评分相关性

    Table  2.   Correlation between mean BMD,T-scores,HU,and modified VBQ scores at L1–L4

    指标 BMD T HU 改良VBQ评分
    BMD 1
    T值 0.988** 1
    HU值 0.854** 0.858** 1
    改良VBQ评分 −0.684** −0.702** −0.661** 1
      **在 0.001 级别(双尾),相关性显著。
    下载: 导出CSV

    表  3  L1~L4平均T值、BMD 、HU值和改良VBQ评分预测胸腰椎骨折的效能

    Table  3.   Predictive efficacy of mean T-scores,BMD,HU,and modified VBQ scores at L1–L4 for thoracolumbar fractures

    指标 AUC 95%CI 敏感度(%) 特异度(%) 约登指数 最佳阈值
    T值 0.826 0.756~0.897 77.8 78.3 0.608 −1.65
    BMD 0.836 0.803~0.928 82.5 73.9 0.596 0.91
    HU值 0.759 0.680~0.839 63.5 73.9 0.374 68.40
    改良VBQ评分 0.875 0.815~0.935 85.7 78.3 0.560 3.01
    下载: 导出CSV
  • [1] Wright N C, Saag K G, Dawson-Hughes B, et al. The impact of the new National Bone Health Alliance (NBHA) diagnostic criteria on the prevalence of osteoporosis in the USA[J]. Osteoporosis Int, 2017, 28(4): 1225-1232. doi: 10.1007/s00198-016-3865-3
    [2] Salari N, Darvishi N, Bartina Y, et al. Global prevalence of osteoporosis among the world older adults: A comprehensive systematic review and meta-analysis[J]. J Orthop Surg Res, 2021, 16(1): 669. doi: 10.1186/s13018-021-02821-8
    [3] Zou D, Ye K, Tian Y, et al. Characteristics of vertebral CT Hounsfield units in elderly patients with acute vertebral fragility fractures[J]. European Spine Journal, 2020, 29(5): 1092-1097. doi: 10.1007/s00586-020-06363-1
    [4] Johannesdottir F, Allaire B, Bouxsein M L. Fracture prediction by computed tomography and finite element analysis: Current and future perspectives[J]. Curr Osteoporos Rep, 2018, 16(4): 411-422. doi: 10.1007/s11914-018-0450-z
    [5] Yu F, Xia W. The epidemiology of osteoporosis, associated fragility fractures, and management gap in China[J]. Arch Osteoporos, 2019, 14(1): 32. doi: 10.1007/s11657-018-0549-y
    [6] Celi M, Rao C, Scialdoni A, et al. Bone mineral density evaluation in osteoporosis: Why yes and why not [J]? Aging Clin Exp Res, 2013, 25 Suppl 1 S47-9.
    [7] Wagner S, Kang D, Steelman T, et al. Diagnosing the undiagnosed: Osteoporosis in patients undergoing lumbar fusion[J]. Spine J, 2016, 16(10): S301.
    [8] Alacreu E, Moratal D, Arana E. Opportunistic screening for osteoporosis by routine CT in Southern Europe[J]. Osteoporosis Int, 2017, 28(3): 983-990. doi: 10.1007/s00198-016-3804-3
    [9] Pompe E, de Jong PA, de Jong WU, et al. Inter-observer and inter-examination variability of manual vertebral bone attenuation measurements on computed tomography[J]. Eur Radiol, 2016, 26(9): 3046-3053. doi: 10.1007/s00330-015-4145-x
    [10] Zou D, LI W, Deng C, et al. The use of CT Hounsfield unit values to identify the undiagnosed spinal osteoporosis in patients with lumbar degenerative diseases[J]. Eur Spine J, 2019, 28(8): 1758-1766. doi: 10.1007/s00586-018-5776-9
    [11] LI Y L, Wong K H, Law M W, et al. Opportunistic screening for osteoporosis in abdominal computed tomography for Chinese population[J]. Arch Osteoporos, 2018, 13(1): 76. doi: 10.1007/s11657-018-0492-y
    [12] Ehresman J, Pennington Z, Schilling A, et al. Novel MRI-based score for assessment of bone density in operative spine patients[J]. Spine J, 2020, 20(4): 556-562. doi: 10.1016/j.spinee.2019.10.018
    [13] Jones C, Okano I, Arzani A, et al. The predictive value of a novel site-specific MRI-based bone quality assessment, endplate bone quality (EBQ), for severe cage subsidence among patients undergoing standalone lateral lumbar interbody fusion[J]. Spine J, 2022, 22(11): 1875-1883. doi: 10.1016/j.spinee.2022.07.085
    [14] Shah L M, Hanrahan C J. MRI of spinal bone marrow: Part I, techniques and normal age-related appearances[J]. Am J Roentgenol, 2011, 197(6): 1298-308. doi: 10.2214/AJR.11.7005
    [15] Cheng X, Zhao K, Zha X, et al. Opportunistic screening using low-dose CT and the prevalence of osteoporosis in China: A nationwide, multicenter study[J]. J Bone Miner Res, 2021, 36(3): 427-35.
    [16] Siris E S, Adler R, Bilezikian J, et al. The clinical diagnosis of osteoporosis: A position statement from the National Bone Health Alliance Working Group[J]. Osteoporos Int, 2014, 25(5): 1439-43. doi: 10.1007/s00198-014-2655-z
    [17] Kim D K, Kim J Y, Kim D Y, et al. Risk factors of proximal junctional kyphosis after multilevel fusion surgery: More than 2 years follow-up data[J]. J Korean Neurosurg Soc, 2017, 60(2): 174-180. doi: 10.3340/jkns.2016.0707.014
    [18] Pinter Z W, Monsef J B, Salmons H I, et al. Does preoperative bone mineral density impact fusion success in anterior cervical spine surgery? A prospective cohort study[J]. World Neurosurg, 2022, 16(4): 830-834.
    [19] Adams J E. Quantitative computed tomography[J]. European Journal of Radiology, 2009, 71(3): 415-24. doi: 10.1016/j.ejrad.2009.04.074
    [20] Salzmann S N, Okano I, Jones C, et al. Preoperative MRI-based vertebral bone quality (VBQ) score assessment in patients undergoing lumbar spinal fusion[J]. Spine J, 2022, 22(8): 1301-1308. doi: 10.1016/j.spinee.2022.03.006
    [21] Tafida M A, Wagatsuma Y, Ma E, et al. Descriptive epidemiology of traumatic spinal injury in Japan[J]. J Orthop Sci, 2018, 23(2): 273-276. doi: 10.1016/j.jos.2017.10.013
    [22] Bloem J L, Reijnierse M, Huizinga T W J, et al. MR signal intensity: Staying on the bright side in MR image interpretation[J]. RMD Open, 2018, 4(1): e000728. doi: 10.1136/rmdopen-2018-000728
    [23] Haffer H, Muellner M, Chiapparelli E, et al. Bone quality in patients with osteoporosis undergoing lumbar fusion surgery: Analysis of the MRI-based vertebral bone quality score and the bone microstructure derived from microcomputed tomography[J]. Spine J, 2022, 22(10): 1642-1650. doi: 10.1016/j.spinee.2022.05.008
    [24] Ehresman J, Schilling A, Yang X, et al. Vertebral bone quality score predicts fragility fractures independently of bone mineral density[J]. Spine J, 2021, 21(1): 20-27. doi: 10.1016/j.spinee.2020.05.540
    [25] LI Q, Hu B, Yang H, et al. MRI-based pedicle bone quality score: correlation to quantitative computed tomography bone mineral density and its role in quantitative assessment of osteoporosis[J]. Spine J, 2023, 24(10): 1825-1832.
    [26] Huang W, Gong Z, Wang H, et al. Use of MRI-based vertebral bone quality score (VBQ) of S1 body in bone mineral density assessment for patients with lumbar degenerative diseases[J]. Eur Spine J, 2023, 32(5): 1553-1560. doi: 10.1007/s00586-023-07643-2
    [27] Yin H, Lin W, Xie F, et al. MRI-based Vertebral bone quality score for osteoporosis screening based on different osteoporotic diagnostic criteria using DXA and QCT[J]. Calcif Tissue Int, 2023, 113(4): 383-392. doi: 10.1007/s00223-023-01115-x
    [28] Özmen E, Biçer O, Meriç E, et al. Vertebral bone quality score for opportunistic osteoporosis screening: A correlation and optimal threshold analysis[J]. Eur Spine J, 2023, 32(11): 3906-3911. doi: 10.1007/s00586-023-07912-0
  • [1] 丁恒, 张帆, 张源, 娄振凯, 李宏昆, 雷宇, 李兴国.  BFMCs椎体成形术与PKP治疗骨质疏松性椎体压缩性骨折的临床分析, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20241011
    [2] 高萌, 刘兴利, 宋巍, 吕梁, 王罡.  昆明地区中老年人群髋部不同位置骨密度与肌肉参数及躯体功能的相关性研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240317
    [3] 周文林, 牛奔, 苏恒.  特发性低促性腺激素性性腺功能减退症的临床危险因素分析, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230727
    [4] 翟晓娜, 房琳, 李勇, 于芳, 裴秋艳, 王平, 杨佐明.  康复指导联合体位性复位在椎体后凸成形术治疗椎体骨质疏松性骨折中的作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220602
    [5] 苗辉, 蒋萍, 娄振凯, 邱龙恒, 周子然, 李成勇, 王兵.  QCT与 DXA对绝经后妇女骨质疏松症检出率的对比, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220407
    [6] 吴丽园, 罗夙医, 顾永洁, 王旗鹏, 许家豪.  三七总黄酮抗糖皮质激素诱发骨质疏松的效应, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20201117
    [7] 季雨伟, 赵鑫, 陆姜利, 杨艺, 唐薇, 角建林.  恒古骨伤愈合剂对绝经后骨质疏松性骨折模型树鼩骨密度及骨生物力学的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20201103
    [8] 张晋, 栾艳, 廖湘波, 李宏伟, 李伟嘉, 郭雯景, 李峰, 李畑.  个旧市健康汉族人群骨密度测定分析, 昆明医科大学学报.
    [9] 白彝华.  抑郁状态对维持性腹膜透析患者发生骨质疏松的影响, 昆明医科大学学报.
    [10] 杨凤.  手术双侧卵巢去势法建立骨质疏松树鼩模型, 昆明医科大学学报.
    [11] 杨继英.  2 519例儿童超声骨密度结果分析, 昆明医科大学学报.
    [12] 柯亭羽.  老年2型糖尿病患者颈动脉粥样硬化与骨密度的相关性研究, 昆明医科大学学报.
    [13] 杨建义.  昆明市官渡区彝族中老年人骨质疏松患病率及影响因素, 昆明医科大学学报.
    [14] 姚荣成.  JGYS对大鼠去卵巢高转换型骨质疏松症的影响, 昆明医科大学学报.
    [15] 伍雪.  我国部分地区紫外辐射强度、日照时间与骨密度关系的比较, 昆明医科大学学报.
    [16] 柯亭羽.  阻塞性睡眠呼吸暂停低通气综合征患者骨密度改变, 昆明医科大学学报.
    [17] 赵一慧.  化疗对乳腺癌患者骨密度的影响, 昆明医科大学学报.
    [18] 吕涛.  男性肥胖骨质疏松患者性激素与骨代谢水平及相关性分析, 昆明医科大学学报.
    [19] 杨曼.  糖尿病SD大鼠骨密度及骨组织学特点研究, 昆明医科大学学报.
    [20] 宋超.  椎体后凸成形术治疗骨质疏松性椎体压缩性骨折分析, 昆明医科大学学报.
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  133
  • HTML全文浏览量:  95
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-09
  • 网络出版日期:  2025-08-12
  • 刊出日期:  2025-08-30

目录

    /

    返回文章
    返回