留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过表达三结构域蛋白48调控p-ERK1/2抑制胶质瘤生长的作用机制

姜右川 余妍 赵国 李世存 丁鹏

姜右川, 余妍, 赵国, 李世存, 丁鹏. 过表达三结构域蛋白48调控p-ERK1/2抑制胶质瘤生长的作用机制[J]. 昆明医科大学学报.
引用本文: 姜右川, 余妍, 赵国, 李世存, 丁鹏. 过表达三结构域蛋白48调控p-ERK1/2抑制胶质瘤生长的作用机制[J]. 昆明医科大学学报.
Youchuan JIANG, Yan YU, Guo ZHAO, Shicun LI, Peng DING. Researches on the Mechanism of Overexpression of Tripartite Motif Protein 48 Regulating p-ERK1/2 to Inhibit Glioma Growth[J]. Journal of Kunming Medical University.
Citation: Youchuan JIANG, Yan YU, Guo ZHAO, Shicun LI, Peng DING. Researches on the Mechanism of Overexpression of Tripartite Motif Protein 48 Regulating p-ERK1/2 to Inhibit Glioma Growth[J]. Journal of Kunming Medical University.

过表达三结构域蛋白48调控p-ERK1/2抑制胶质瘤生长的作用机制

基金项目: 云南省科技厅重点基金资助项目(202001AY070001-160);云南省卫生高层次人才专项基金资助项目(L-2019020)
详细信息
    作者简介:

    姜右川(1996~),男,山东临沂人,在读硕士研究生,主要从事胶质瘤研究工作

    余妍与姜右川对本文有同等贡献

    通讯作者:

    丁鹏,E-mail:pengdwfmc@163.com

  • 中图分类号: R739.41

Researches on the Mechanism of Overexpression of Tripartite Motif Protein 48 Regulating p-ERK1/2 to Inhibit Glioma Growth

  • 摘要:   目的  探究过表达三结构域蛋白48(tripartite motif protein,TRIM)对胶质瘤生长的影响及其相关机制。  方法  将12只裸鼠随机均分为2组,分别接种过表达TRIM48的U87胶质瘤稳转株(oeTRIM48组)及其对照细胞株(Vector组)。接种后每3 d测定肿瘤体积,4周后取出肿瘤组织并记录瘤重。肿瘤组织做HE染色,并通过免疫荧光法检测Ki-67的表达,使用Western blot和免疫组化分别检测裸鼠肿瘤和人胶质瘤组织芯片中的TRIM48、ERK1/2和p-ERK1/2水平。  结果  oeTRIM48组裸鼠肿瘤体积、重量比Vector组裸鼠明显降低(P < 0.0001);HE染色结果显示oeTRIM48组细胞核减小、核分裂象减少;Ki-67阳性区域显著降低(P < 0.0001),而且oeTRIM48组p-ERK1/2蛋白水平比Vector组显著降低(P < 0.01)。组织芯片免疫组化显示,TRIM48和p-ERK1/2在癌旁组织分别呈高表达和低表达,在肿瘤组织则相反。  结论  过表达TRIM48能够抑制胶质瘤生长、增殖,其作用机制可能与ERK1/2信号通路有关。
  • 图  1  过表达TRIM48对胶质瘤生长的影响

    A:肿瘤组织重量;B:肿瘤组织体积;C:肿瘤组织HE染色(×200);n=6; ****P < 0.0001。

    Figure  1.  Effect of TRIM48 overexpression on glioma growth

    图  2  过表达TRIM48影响胶质瘤组织增殖活性

    n=5,****P < 0.0001。

    Figure  2.  Overexpression of TRIM48 affects the proliferation activity of glioma tissues

    图  3  过表达TRIM48对ERK1/2通路的调控

    A:qRT-PCR和Western blot检测转染结果;B:Western blot检测过表达TRIM48对ERK1/2信号通路激活情况。n=6; ns:差异无统计学意义;*P < 0.05;**P < 0.01;****P< 0.0001。

    Figure  3.  Regulation of ERK1/2 pathway by overexpression of TRIM48

    图  4  胶质瘤患者组织芯片中TRIM48与ERK1/2信号通路之间的关系(×200)

    A:通过免疫组化检测组织芯片中胶质瘤患者肿瘤组织及匹配癌旁组织TRIM48与p-ERK1/2表达情况;B:p-ERK1/2在肿瘤组织与癌旁组织中的阳性区域;C:TRIM48在肿瘤组织和癌旁组织中的阳性区域;n=6;****P < 0.0001。

    Figure  4.  Direct relationship between TRIM48 and ERK1/2 signaling pathway in glioma tissue microarray

    表  1  PCR引物

    Table  1.   PCR primers

    引物名称目的基因序列(5'→3')产物大小(bp)
    Forward primer 1TRIM48AGCACCGGTATCACAGACAC162
    Reverse primer 1TRIM48TGTCTCCAAAAGCCTTCCAGTG162
    Forward primer 2β-actinAGGATTCCTATGTGGGCGAC273
    Reverse primer 2β-actinATAGCACAGCCTGGATAGCAA273
    下载: 导出CSV
  • [1] Omuro A,DeAngelis L M. Glioblastoma and other malignant gliomas: A clinical review[J]. Jama,2013,310(17):1842-1850. doi: 10.1001/jama.2013.280319
    [2] 国家卫生健康委员会医政医管局,中国抗癌协会脑胶质瘤专业委员会,中国医师协会脑胶质瘤专业委员会. 脑胶质瘤诊疗指南(2022版)[J]. 中华神经外科杂志,2022,38(8):757-777. doi: 10.3760/cma.j.cn112050-20220510-00239
    [3] Ostrom Q T,Bauchet L,Davis F G,et al. The epidemiology of glioma in adults: A "state of the science" review[J]. Neuro Oncol,2014,16(7):896-913. doi: 10.1093/neuonc/nou087
    [4] Schaff L R,Mellinghoff I K. Glioblastoma and other primary brain malignancies in adults: A review[J]. Jama,2023,329(7):574-587.
    [5] Ozato K,Shin D M,Chang T H,et al. TRIM family proteins and their emerging roles in innate immunity[J]. Nat Rev Immunol,2008,8(11):849-860. doi: 10.1038/nri2413
    [6] Hatakeyama S. TRIM proteins and cancer[J]. Nat Rev Cancer,2011,11(11):792-804. doi: 10.1038/nrc3139
    [7] Watanabe M,Hatakeyama S. TRIM proteins and diseases[J]. J Biochem,2017,161(2):135-144.
    [8] Menon S,Goldfarb D,Ho C T,et al. The TRIM9/TRIM67 neuronal interactome reveals novel activators of morphogenesis[J]. Mol Biol Cell,2021,32(4):314-330. doi: 10.1091/mbc.E20-10-0622
    [9] Montell D J. TRIMing neural connections with ubiquitin[J]. Dev Cell,2019,48(1):5-6. doi: 10.1016/j.devcel.2018.12.012
    [10] Magiera M M,Mora S,Mojsa B,et al. Trim17-mediated ubiquitination and degradation of Mcl-1 initiate apoptosis in neurons[J]. Cell Death Differ,2013,20(2):281-292. doi: 10.1038/cdd.2012.124
    [11] Venuto S,Castellana S,Monti M,et al. TRIM8-driven transcriptomic profile of neural stem cells identified glioma-related nodal genes and pathways[J]. Biochim Biophys Acta Gen Subj,2019,1863(2):491-501. doi: 10.1016/j.bbagen.2018.12.001
    [12] Zhang C,Mukherjee S,Tucker-Burden C,et al. TRIM8 regulates stemness in glioblastoma through PIAS3-STAT3[J]. Mol Oncol,2017,11(3):280-294. doi: 10.1002/1878-0261.12034
    [13] Deng Y,Zhu H,Xiao L,et al. Circ_0005198 enhances temozolomide resistance of glioma cells through miR-198/TRIM14 axis[J]. Aging (Albany NY),2020,13(2):2198-2211.
    [14] Meng L,Wang Y,Tu Q,et al. Circular RNA circ_0000741/miR-379-5p/TRIM14 signaling axis promotes HDAC inhibitor (SAHA) tolerance in glioblastoma[J]. Metab Brain Dis,2023,38(4):1351-1364.
    [15] Zhang L H,Yin Y H,Chen H Z,et al. TRIM24 promotes stemness and invasiveness of glioblastoma cells via activating Sox2 expression[J]. Neuro Oncol,2020,22(12):1797-1808. doi: 10.1093/neuonc/noaa138
    [16] Han K,Lou D I,Sawyer S L. Identification of a genomic reservoir for new TRIM genes in primate genomes[J]. PLoS Genet,2011,7(12):e1002388. doi: 10.1371/journal.pgen.1002388
    [17] Xue L P,Lu B,Gao B B,et al. Overexpression of tripartite motif-containing 48 (TRIM48) inhibits growth of human glioblastoma cells by suppressing extracellular signal regulated kinase 1/2 (ERK1/2) pathway[J]. Med Sci Monit,2019,25(1):8422-8429.
    [18] Jin Q,Zhang W,Qiu X G,et al. Gene expression profiling reveals Ki-67 associated proliferation signature in human glioblastoma[J]. Chin Med J (Engl),2011,124(17):2584-2588.
    [19] Yang P,Wang Y,Peng X,et al. Management and survival rates in patients with glioma in China (2004-2010): A retrospective study from a single-institution[J]. J Neurooncol,2013,113(2):259-266. doi: 10.1007/s11060-013-1103-9
    [20] Sun X,Kaufman P D. Ki-67: More than a proliferation marker[J]. Chromosoma,2018,127(2):175-186. doi: 10.1007/s00412-018-0659-8
    [21] Cuylen S,Blaukopf C,Politi A Z,et al. Ki-67 acts as a biological surfactant to disperse mitotic chromosomes[J]. Nature,2016,535(7611):308-312. doi: 10.1038/nature18610
    [22] Mrouj K,Andr é s-S á nchez N,Dubra G,et al. Ki-67 regulates global gene expression and promotes sequential stages of carcinogenesis[J]. Proc Natl Acad Sci U S A,2021,118(10):e2026507118. doi: 10.1073/pnas.2026507118
    [23] Theresia E,Malueka R G,Pranacipta S,et al. Association between Ki-67 labeling index and histopathological grading of glioma in indonesian population[J]. Asian Pac J Cancer Prev,2020,21(4):1063-1068. doi: 10.31557/APJCP.2020.21.4.1063
    [24] Yu Z,Ye S,Hu G,et al. The RAF-MEK-ERK pathway: Targeting ERK to overcome obstacles to effective cancer therapy[J]. Future Med Chem,2015,7(3):269-289. doi: 10.4155/fmc.14.143
    [25] Bhattacharya D,Chaudhuri S,Singh M K,et al. T11TS inhibits angiopoietin-1/Tie-2 signaling,EGFR activation and Raf/MEK/ERK pathway in brain endothelial cells restraining angiogenesis in glioma model[J]. Exp Mol Pathol,2015,98(3):455-466. doi: 10.1016/j.yexmp.2015.03.026
    [26] Cheng M,Liu L. MUC15 promotes growth and invasion of glioma cells by activating Raf/MEK/ERK pathway[J]. Clin Exp Pharmacol Physiol,2020,47(6):1041-1048. doi: 10.1111/1440-1681.13277
    [27] Li Q,Zhang L,Yang Q,et al. Thymidine kinase 1 drives hepatocellular carcinoma in enzyme-dependent and -independent manners[J]. Cell Metab,2023,35(6):912-927. doi: 10.1016/j.cmet.2023.03.017
    [28] Hirata Y. Reactive oxygen species (ROS) signaling: Regulatory mechanisms and pathophysiological roles][J]. Yakugaku Zasshi,2019,139(10):1235-1241. doi: 10.1248/yakushi.19-00141
    [29] Hirata Y,Katagiri K,Nagaoka K,et al. TRIM48 promotes ASK1 activation and cell death through ubiquitination-dependent degradation of the ASK1-negative regulator PRMT1[J]. Cell Rep,2017,21(9):2447-2457. doi: 10.1016/j.celrep.2017.11.007
  • [1] 洪超, 向旭东, 李盈甫, 曹杨, 陈雪雅, 李帅, 邢安灏, 林牧, 马千里.  ERK1/2信号通路基因3'UTR多态性与非小细胞肺癌的相关性, 昆明医科大学学报. 2024, 45(3): 7-17. doi: 10.12259/j.issn.2095-610X.S20240302
    [2] 冯毅, 王小峰, 白西民, 姚胜, 党俊涛, 赵云洁, 蔡冰.  miR-149-5p通过MSH5/Wnt信号通路调控胶质瘤细胞恶性生物学行为, 昆明医科大学学报. 2023, 44(8): 59-70. doi: 10.12259/j.issn.2095-610X.S20230823
    [3] 余朝军, 赵迁浩, 赵宁辉.  低氧微环境对脑胶质瘤细胞增殖、凋亡及HIF-1α表达的影响, 昆明医科大学学报. 2020, 41(07): 11-16.
    [4] 李梦楠, 徐焕焕, 刘亚南, 杨双, 李崇阳, 徐世莲.  伏核神经元ERK1/2在GalR1激活对神经痛大鼠镇痛作用中的机制, 昆明医科大学学报. 2020, 41(05): 7-12.
    [5] 王宏宇, 韦焘, 王进昆, 杨智勇, 王伟民, 丁鹏.  MCP-1、VEGF在人脑胶质瘤中的表达及其相关性, 昆明医科大学学报. 2020, 41(01): 26-30.
    [6] 陈希, 许智星, 刘旭杰, 田锦涛, 牛小群, 蒲军.  洛哌丁胺体外对胶质瘤干细胞的杀伤作用, 昆明医科大学学报. 2020, 41(09): 21-25.
    [7] 黄治国, 殷维, 晏毅.  瑞芬太尼抑制大鼠炎症性疼痛及其机制, 昆明医科大学学报. 2019, 40(08): 6-11.
    [8] 徐波, 杨锐, 陆斌, 曾锐, 孙珂, 丁鹏.  趋化因子CCL2在胶质瘤细胞株U251、U373中的表达, 昆明医科大学学报. 2019, 40(04): 16-19.
    [9] 李国林, 李超, 李峰.  IL1RN基因多态性与脑胶质瘤患病风险的相关性, 昆明医科大学学报. 2018, 39(04): 47-51.
    [10] 徐华.  X线辐射联合替莫唑胺化疗对胶质瘤CD133、ABCG2表达的影响, 昆明医科大学学报. 2016, 37(01): -.
    [11] 魏亚辉.  IGF-2及IGFBP-2与脑神经胶质瘤侵袭能力的相关性分析, 昆明医科大学学报. 2015, 36(05): -.
    [12] 王参智.  MGMT、XRCC1基因在脑胶质瘤中的表达及其临床应用, 昆明医科大学学报. 2015, 36(12): -.
    [13] 郝金钢.  DWI在脑转移瘤和恶性胶质瘤鉴别诊断中的价值, 昆明医科大学学报. 2014, 35(11): -1.
    [14] 石磊.  31例脑胶质瘤临床预后及其影响因素分析, 昆明医科大学学报. 2013, 34(04): -.
    [15] 刘佳鑫.  SDF-1/CXCR4在恶性胶质瘤细胞体外增殖、迁移及侵袭中的作用, 昆明医科大学学报. 2013, 34(01): -.
    [16] 牛华涛.  XRCC1在脑胶质瘤中的表达及与放疗的相关性研究, 昆明医科大学学报. 2013, 34(11): -.
    [17] PAI-1在人脑胶质瘤中的表达及意义分析, 昆明医科大学学报. 2011, 32(02): -.
    [18] 苏星.  PAI-1在人脑胶质瘤中的表达及意义分析, 昆明医科大学学报. 2011, 32(02): -.
    [19] 人脑胶质瘤中proNGF凋亡前信号的研究, 昆明医科大学学报. 2011, 32(08): -.
    [20] SDF-1与VEGF在胶质瘤表达中的关系及意义, 昆明医科大学学报. 2011, 32(05): -.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  204
  • HTML全文浏览量:  192
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 网络出版日期:  2024-04-30

目录

    /

    返回文章
    返回