Effects of Osteoking Combined with Antibiotic Cocktail on Insulin Resistance and Gut Flora in db/db Mice
-
摘要:
目的 探究恒古骨伤愈合剂联合广谱抗生素暴露对db/db小鼠胰岛素抵抗和肠道菌群影响。 方法 以野生型小鼠作对照,db/db小鼠随机分为4组:模型组、抗生素组、恒古骨伤愈合剂组、复合干预组;给药11周后,检测体重、空腹血糖、血清胰岛素,计算胰岛素抵抗指数,16S rDNA分析动物肠内容物菌群。 结果 与对照组比较,db/db小鼠体重、空腹血糖、胰岛素抵抗指数升高(P < 0.05)。相对于db/db小鼠,抗生素(ABS)组、恒古骨伤愈合剂(OK)组和复合干预组(AO)血糖和岛素抵抗指数(HOMA-IR)降低( P < 0.05);ABS组肠道菌群的shannon、simpson和 pielou_e指数下降( P < 0.05);而OK组升高( P < 0.05);AO组仅shannon和 pielou_e升高( P < 0.05)。在门水平上,OK组厚壁菌门( P < 0.05)、ABX( P < 0.01)和AO组( P < 0.01)变形菌门的丰度升高,OK组( P < 0.05)、AO组( P < 0.01)和ABX( P < 0.01)的拟杆菌门相对丰度降低;在科水平,OK组毛螺菌科( P < 0.05)、ABX和AO组肠杆菌科、萨特菌科及AO组坦纳菌科的丰度均升高( P < 0.01),而OK组Muribaculaceae丰度降低( P < 0.05)。LEFse分析显示,ABX组的优势菌均为变形菌门。OK组毛螺菌科NK4A136组和乳杆菌属,脱硫杆菌科和普雷沃氏菌科富集。AO组古氏副拟杆菌,阿克曼菌属和 γ- 变形菌纲摩根菌科及 α- 变形菌纲富集。 结论 广谱抗生素、恒古骨伤愈合剂单独或联合使用均有降低db/db小鼠血糖和胰岛素抵抗的作用,恒古骨伤愈合剂可改善抗生素对db/db肠道微生态损害。 Abstract:Objective To investigate the effects of Osteoking combined with antibiotic cocktail on insulin resistance and gut microbiota in db/db mice. Methods The wild mice were used as the control group, while db/db mice were randomly divided into the model group, Osteoking group (OK), antibiotic group (ABX), and Osteoking combined with antibiotic cocktail group (OA). After the intragastric administration for 11 weeks, the following indices were investigated: body weight, fasting blood-glucose (FBG), serum insulin and the changes of intestinal microflora by 16S rDNA sequencing technology in mice. Results Compared with the model group, levels of FBG and HOMA- IR were significantly decreased in OK, ABX, AO groups (P < 0.05). And the shannon、simpson and pielou_e index of gut microbiota were significantly decreased in ABX group ( P < 0.05), while they were increased in OK group ( P < 0.05). The shannon and pielou_e index were increased in AO group ( P < 0.05). At the phylum level, the relative abundance (RA) of Firmicutes ( P < 0.05) in OK group, RA of Proteobacteria in ABX ( P < 0.01)and AO groups ( P < 0.01) were significantly increased; while RA of Bacteroidota was significantly decreased in OK ( P < 0.05), ABX ( P < 0.01), AO ( P < 0.01)groups. At the family level, RA of Lachnospiraceae ( P < 0.05) in OK group, Enterobacteriaceae, Sutterellaceae in ABX and AO groups ( P <0.01)and Tannerellaceae in AO groups ( P < 0.01) were significantly increased; while RA of Muribaculaceae in OK group was significantly decreased ( P < 0.05). The following gut microbiota were riched: Proteobacteria in ABX group, Lachnospiraceae NK4A136 group, Lactobacillus, Desulfobacteraceae and Prevotellaceae in OK group, Parabacteroides gordonii, Akkermansia, Morganellaceae and Alphaproteobacteria in AO group. Conclusion Osteoking, antibiotic cocktail alone or in combination have the effects of improving the insulin resistance in db/db mice. And Osteoking can improve the intestinal microflora imbalance induced by antibiotic cocktail. -
Key words:
- Antibiotic cocktail /
- Osteoking /
- Insulin resist /
- db/db mice /
- Gut microbiota
-
表 1 各组小鼠肠道菌群丰富度和均匀性指数( $ \bar x \pm s $)
Table 1. Alpha-diversity index of gut microbiota in the 5 groups ( $ \bar x \pm s $)
组别 chao1指数 shannon指数 simpson指数 Pielou-e指数 样本覆盖度 对照组(wt) 557.81 ± 78.59 7.16 ± 0.47 0.98 ± 0.0044 0.79 ± 0.039 1.00 模型组(db/db) 363.52 ± 28.91* 5.87 ± 0.64* 0.92 ± 0.0087 *0.69 ± 0.047* 1.00 广谱抗生素组(ABX) 193.04 ± 32.41## 3.70 ± 0.14## 0.84 ± 0.0091 ##0.49 ± 0.018## 1.00 恒古骨伤愈合剂组(OK) 467.39 ± 51.07# 6.84 ± 0.82# 0.96 ± 0.041# 0.78 ± 0.080# 1.00 联合用药组(AO) 311.28 ± 33.87 4.50 ± 0.50# 0.91 ± 0.013 0.59 ± 0.032# 1.00 F 4.01 15.75 13.41 11.69 — P 0.0132 < 0.0001 < 0.0001 < 0.0001 — 与对照组比较,*P < 0.05;与模型组比较, #P < 0.05, ##P < 0.01。 -
[1] Que Y Y,Cao M,He J Q,et al. Gut bacterial characteristics of patients with type 2 diabetes mellitus and the application potential[J]. Frontiers in Immunology,2021,12(6):722206-722217. [2] Schwalm N D,Groisman E A. Navigating the gut buffet: Control of polysaccharide utilization in bacteroides spp[J]. Trends Microbiol,2017,25(12):1005-1015. doi: 10.1016/j.tim.2017.06.009 [3] 杨艺. 恒古骨伤愈合剂对2型糖尿病性骨质疏松症的作用及机制研究 [D]. 昆明: 昆明医科大学硕士学位论文, 2022. [4] Ubeda C,Pamer E G. Antibiotics,microbiota,and immune defense[J]. Trends Immunol,2012,33(9):459-466. doi: 10.1016/j.it.2012.05.003 [5] 宋雪梅,金小琴,秦合伟,等. 中医药通过肠道菌群治疗 2 型糖尿病的进展[J]. 世界科学技术-中医药现代化,2023,25(1):1-12. [6] Page M M,Johnson J D. Mild suppression of hyperinsulinemia to treat obesity and insulin resistance[J]. Trends in Tndocrinology and Metabolism,2018,29(6):389-399. [7] Ianro G,Tilg H,Gasbarrini A. Antibiotics as deep modulators of gut microbiota: Between good and evil[J]. Gut,2016,65(11):1906-1915. [8] Rodrigues R R,Greer R L,Dong X,et al. Antibiotic-induced alterations in gut microbiota are associated with changes in glucose metabolism in healthy mice[J]. Front Microbiol,2017,8(2):2306-2320. [9] 吴思谋,苗钟化,周青青,等. 长期抗生素暴露对高脂饮食负荷小鼠糖代谢和肠道菌群的影响[J]. 现代预防医学,2021,48(21):3878-3893. [10] Hansen C H,Krych L,Nielsen D S,et al. Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse[J]. Diabetologia,2012,5(3):2285-2294. [11] Fu L H,Qiu Y X,Shen L Y,et al. The delayed effects of antibiotics in type 2 diabetes,friend or foe?[J]. Journal of Endocrinology,2019,238(2):137-149. [12] Ma X,Brinker E,Graff E C,et al. Whole-genome shotgun metagenomic sequencing reveals distinct gut microbiome signatures of obese cats[J]. Microbiol Spectr,2022,10(3):837-852. [13] Ridaura V K,Faith J J,Rey F E,et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice[J]. Science,2013(341):1241214-1241226. [14] Zhang J,Jin W,Jiang Y,et al. Response of milk performance,rumen and hindgut microbiome to dietary supplementation with aspergillus oryzae fermentation extracts in dairy cows[J]. Curr Microbiol,2022,79(4):113-125. doi: 10.1007/s00284-022-02790-z [15] Martin S A,Nisbet D J. Effect of direct-fed microbials on rumen microbial fermentation[J]. J Dairy Sci,1992,75(6):1736-1744. doi: 10.3168/jds.S0022-0302(92)77932-6 [16] Wan Y,Li D. High-fat,low-carbohydrate diet was associated with unfavourable impact on colonic luminal microenvironment[J]. Gut,2020,69(9):1-13. [17] Kim Y I,Kim Y A,Kim H J,et al. Effect of helicobacter pylori treatment on the long-term mortality in patients with type 2 diabetes[J]. Korean J Intern Med,2021,36(3):584-595. doi: 10.3904/kjim.2019.428 [18] Wang R,Yang X,Jiang Q,et al. Effect of mussel polysaccharide on glucolipid metabolism and intestinal flora in type 2 diabetic mice[J]. J Sci Food Agric,2023,103(7):3353-3366. doi: 10.1002/jsfa.12488 [19] Wang K,Liao M F,Zhou N,et al. Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids[J]. Cell Rep,2019,26(1):222-235.e5. doi: 10.1016/j.celrep.2018.12.028 [20] Bao L,Zhang Y,Zhang G,et al. Abnormal proliferation of gut mycobiota contributes to the aggravation of type 2 diabetes[J]. Commun Biol,2023,6(1):226-236. doi: 10.1038/s42003-023-04591-x [21] Xiao S,Liu C,Chen M,et al. Scutellariae radix and coptidis rhizoma ameliorate glycolipid metabolism of type 2 diabetic rats by modulating gut microbiota and its metabolites[J]. Appl Microbiol Biotechnol,2020,104(1):303-317. doi: 10.1007/s00253-019-10174-w [22] Martinez-Medina M,Denizot J,Dreux N,et al. Western diet induces dysbiosis with increased E coli in CEABAC10 mice,alters host barrier function favouring AIEC colonisation[J]. Gut,2014,63(1):116-124. doi: 10.1136/gutjnl-2012-304119 [23] Gutierrez M W,Mercer E M,Moossavi S,et al. Maturational patterns of the infant microbiome are associated with early-life body mass index[J]. Cell Rep Med,2023,4(2):100928-100942. doi: 10.1016/j.xcrm.2023.100928