The Association between miR-146a Gene Polymorphism and Cervical Intraepithelial Neoplasia
-
摘要:
目的 探究miR-146a基因的单核苷酸多态性(single nucleotide polymorphisms,SNP)rs57095329、rs6864584与宫颈上皮内瘤变(cervical intraepithelial neoplasia,CIN)的相关性。 方法 利用SPSS软件随机收集96例CIN患者作为CIN组,225名健康个体作为对照组,采用TaqMan探针法对以上SNP位点进行基因分型,分析其与CIN的相关性。 结果 rs57095329位点的等位基因和基因型分布相对于对照组差异具有统计学意义,CIN组中等位基因A的频率显著低于对照组(P < 0.001;OR = 0.48,95%CI:0.32~0.70);在显性模式下,携带G等位基因(A/G-G/G)的个体CIN发生风险显著升高(P < 0.001;OR = 2.67,95% CI:1.64~4.37)。但rs6864584位点与CIN的发生风险无相关性。 结论 miR-146a基因rs57095329位点的A等位基因可能是CIN的保护性因素。 Abstract:Objective To investigate the association between single nucleotide polymorphisms (SNP) rs57095329 and rs6864584 of miR-146a gene and cervical intraepithelial neoplasia (CIN) . Methods A total of 96 patients diagnosed with CIN were randomly collected as the CIN group, and 225 healthy individuals examined during the same period were selected as the control group using SPSS software. Genotyping of the above SNP loci was performed using the TaqMan probe method, and their correlation with CIN was analyzed. Results The allele and genotype distribution of rs57095329 showed a statistically significant differences compared to the control group, with the frequency of the allele A in the CIN group significantly lower than that in the control group (P < 0.001; OR = 0.48, 95%CI: 0.32~0.70). In the dominant model, individuals carrying the G allele (A/G-G/G) had a significantly increased risk of CIN (P < 0.001; OR = 2.67, 95%CI: 1.64~4.37). In contrast, no correlation was found between the rs6864584 and the risk of CIN. Conclusion The A allele of the miR-146a gene at the rs57095329 locus may be a protective factor for CIN. -
宫颈癌是世界范围内最常见的癌症之一,在所有女性恶性肿瘤中其发病率和死亡率均排名第四[1]。在我国,宫颈癌的发病率和死亡率分别是16.56/10万和11.78/10万,给社会造成了严重的疾病和经济负担[2]。95%以上的宫颈癌是由于持续感染高风险人乳头状瘤病毒(high risk- human papillomavirus,HR-HPV)造成的[3−4]。宫颈癌的发展可分为宫颈上皮内瘤变(cervical intraepithelial neoplasia,CIN)和宫颈癌两个主要阶段[5],在此过程中,HPV感染和宿主遗传因素相互作用,共同决定了疾病的进展[6]。近年来的研究证据表明,宿主的遗传变异,如微小RNA(microRNAs,miRNAs)的多态性在宫颈癌的发生和进展中起到了重要作用[7−10]。
miRNAs是一类长度约为20~24个核苷酸的非编码单链RNA[11−12],通过调控各种细胞信号通路对肿瘤细胞产生重要影响,在包括宫颈癌在内的多种癌症发展中发挥着重要作用,比如转移[13]、免疫浸润[14]、侵袭[15]等。多项研究发现,miR-146a在癌症中的异常表达,既可以发挥肿瘤抑制作用,也可能促进肿瘤形成。例如,miR-146a在乳腺癌中的高表达与肿瘤细胞增殖有关[16];在基底样乳腺癌细胞中的过度表达,导致p53功能改变从而增强了肿瘤发生的潜力[17]。此外,Yue等[18]研究发现,miR-146a基因的单核苷酸多态性(single nucleotide polymorphisms,SNP)会导致其成熟序列表达差异,从而增加个体罹患宫颈癌的风险。
本研究选取miR-146a基因的两个SNP位点rs57095329、rs6864584,并在云南汉族人群中探讨这两个SNP位点与CIN发生风险的相关性,以期为CIN的预防和诊断提供候选靶点。
1. 资料与方法
1.1 研究对象
本次研究共纳入2017年5月至2019年10月间96例在该院被诊断为CIN的患者作为CIN组,另选取同期在该医院225例进行健康体检的个体作为对照组。CIN组的纳入标准为:(1)根据美国国立综合癌症网络(National Comprehensive Cancer Network,NCCN)肿瘤学临床实践指南以及国际妇产科联盟(International Federation of Gynecology and Obstetrics,FIGO)分期指导诊断[19],确诊为癌前病变;(2)根据宫颈病理诊断标准明确CIN病理分期[20];(3)患者取样前未接受放化疗等抗肿瘤辅助手段治疗;(4)患者不具有其他恶性肿瘤以及心血管疾病、糖尿病等慢性疾病;(5)临床资料完整。排除采样前接受过放化疗等抗肿瘤辅助治疗方法的患者以及其他恶性肿瘤患者。本研究方案已通过昆明医科大学第三附属医院伦理委员会批准(KYCS2021193),所有研究对象均签署知情同意书。
1.2 DNA提取
使用QIAamp DNA Blood Mini Kit血液DNA提取试剂盒从全血样本中提取DNA,检测DNA的浓度和纯度,并将DNA样本保存于-80 ℃冰箱备用。
1.3 基因分型实验
采用TaqMan探针法对SNP位点进行基因分型,所使用的TaqMan探针(TaqMan SNP Genotyping Assays)及分型试剂(TaqMan Genotyping Master Mix)均购于美国ABI公司。其中,rs57095329探针的编号为C__90078480_10,rs6864584由公司进行定制合成。具体反应体系和条件请参照笔者之前的研究[12,21−22]。每块384孔反应板中包含3个阳性对照和至少1个阴性对照。
1.4 统计学分析
采用SPSS 26.0软件进行数据统计分析。CIN组和对照组间的年龄为计量资料,经检验符合正态分布且方差齐,以均数±标准差($ \bar x \pm s $)表示,分布差异通过独立样本t检验完成。使用SHEsis在线软件(http://analysis.bio-x.cn/)进行哈迪-温伯格平衡检验(Hardy-Weinberg Equilibrium,HWE)以评估样本的群体代表性,两组间不同SNP位点基因型和等位基因分布频率为计数资料,以例数和百分比[n (%)]表示,并通过卡方检验分析两组间的分布差异[23]。此外,借助SNPstats(https://snpstats.net/start.htm)在线软件对两个SNP位点进行遗传模式分析。检验水准设定为α = 0.05,对于多重比较,P值使用Bonferroni法校正为0.025。
2. 结果
2.1 受试者基础临床信息
本研究共纳入321例受试者,对照组共225例,平均年龄(45.55±12.88)岁;CIN组共96例,平均年龄(45.34±10.65)岁,其中CIN I 期23例(24.0%),CIN Ⅱ期13例(13.5%),CIN Ⅲ期60例(62.5%)。采用独立样本t检验比较对照组和CIN组之间年龄分布,差异无统计学意义(t = 0.812,P = 0.445)。
2.2 SNP位点与CIN和CC的相关性分析
2.2.1 Hardy-Weinberg平衡检验
对两个SNP位点在各样本组间的分布进行HWE平衡检验,结果表明rs57095329、rs6864584均处于HWE平衡(P > 0.05),说明样本具有群体代表性。
2.2.2 SNP位点在对照组和CC、CIN中的分布频率
rs57095329位点A等位基因在CIN组的频率显著低于对照组(P < 0.001,OR = 0.48,95%CI:0.32~0.70),AA基因型在CIN组中的频率显著低于对照组(P < 0.001)。rs6864584位点的等位基因和基因型分布频率在对照组与CIN组之间差异无统计学意义(P = 0.473;P = 0.602),见表1。
表 1 SNP位点的等位基因和基因型在对照组和CIN组中的分布特征[n (%)]Table 1. Distribution characteristics of allele and genotype at SNP loci in the control group and CIN group [n (%)]SNPs 等位基因/基因型 对照组 CIN组 HWE 对照组 vs CIN组 χ2 P χ2 P OR (95%CI) rs57095329 A 370(82.2) 132(68.8) 0.742 0.389 14.325 < 0.001* 0.48(0.32~0.70) G 80(17.8) 60(31.2) A/A 154(68.4) 43(44.8) 15.888 < 0.001* A/G 62(27.6) 46(47.9) G/G 9(4.0) 7(7.3) rs6864584 C 38(8.4) 13(6.8) 0.116 0.733 0.515 0.473 0.79(0.41~1.51) T 412(91.6) 179(93.2) C/C 2(0.9) 0(0.0) 1.014 0.602 C/T 34(15.1) 13(13.5) T/T 189(84.0) 83(86.5) *P < 0.025。 2.2.3 SNP位点在对照组和CIN组的遗传模式分析
在对照组与CIN组的比较中,显性模式(AIC = 380,BIC = 387.6)是rs57095329位点的最优遗传模式,在该模式下,基因型A/G-G/G相对于A/A增加了CIN的发生风险(P < 0.001;OR = 2.67,95%CI:1.64~4.37)。rs6864584位点的最优遗传模式为隐性模式(AIC = 394.2,BIC = 401.8),该位点基因型与CIN发生的风险无显著相关性(P > 0.05),见表2。
表 2 SNP位点在对照组和CIN中的遗传模式分析[n (%)]Table 2. Genetic model analysis of SNP loci in the control and CIN groups [n (%)]SNPs 模型 基因型 对照组 CIN组 对照组 vs CIN组 χ2 P OR (95%CI) rs57095329 共显性 A/A 154(68.4) 43 (44.8) 14.555 < 0.001* 1.00 A/G 62 (27.6) 46 (47.9) 2.66(1.60~4.42) G/G 9 (4.0) 7 (7.3) 2.79(0.98~7.91) 显性 A/A 154(68.4) 43 (44.8) 15.879 < 0.001* 1.00 A/G-G/G 71 (31.6) 53 (55.2) 2.67(1.64~4.37) 隐性 A/A-A/G 216(96.0) 89 (92.7) 1.539 0.230 1.00 G/G 9 (4.0) 7 (7.3) 1.89(0.68~5.23) 超显性 A/A-G/G 163(72.4) 50 (52.1) 12.496 < 0.001* 1.00 A/G 62 (27.6) 46 (47.9) 2.42(1.47~3.97) 逻辑累加 --- --- --- 17.055 < 0.001* 2.12(1.42~3.16) rs6864584 共显性 T/T 189(84.0) 83 (86.5) 0.155 0.450 1.00 T/C 34 (15.1) 13 (13.5) 0.87(0.44~1.73) C/C 2 (0.9) 0 (0.0) --- 显性 T/T 189(84.0) 83 (86.5) 0.314 0.570 1.00 T/C-C/C 36 (16.0) 13 (13.5) 0.82(0.41~1.63) 隐性 T/T-T/C 223(99.1) 96(100.0) 0.859 0.230 1.00 C/C 2 (0.9) 0 (0.0) --- 超显性 T/T-C/C 191(84.9) 83 (86.5) 0.133 0.710 1.00 T/C 34 (15.1) 13 (13.5) 0.88(0.44~1.75) 逻辑累加 --- --- --- 0.519 0.470 0.79(0.41~1.51) *P < 0.05。 2.3 rs57095329潜在作用机制探讨
在得到rs57095329可能与CIN风险相关的初步结果后,笔者对其潜在作用机制进行了探讨。分析结果显示,rs57095329可能影响与43种蛋白结合而发挥作用,分数为2 b,见图1。在子宫组织中,rs57095329对SPI1的表达有影响(P = 0.050),见图2。
3. 讨论
目前研究已经确定持续感染高危型HPV是导致宫颈癌最主要的原因[24]。病毒、病毒和环境因素之间复杂的相互作用决定了最终的感染结局[25]。宿主癌基因或肿瘤抑制基因的分子改变是癌症发展的关键驱动因素[26]。研究表明miRNA具有抗癌基因或致癌基因的功能[27−28]。miRNA中的SNP与包括癌症在内的多种疾病密切相关,其中的某些SNP与人类癌症的易感性存在相关性[18,29−31]。miRNA中的SNP可改变miRNA的表达水平或结合亲和力,进而调控靶基因的表达,从而显著影响细胞通路调控决定细胞命运[32−33]。本研究对宫颈癌组织与正常组织差异表达的miR-416a基因进行分析,选取位于该基因启动区域上的SNP位点rs57095329、rs6864584进行基因分型。
在本研究中,rs57095329位点的等位基因A可能是CIN发生的保护性因素。在显性模式下,携带G等位基因(A/G-G/G)的个体CIN发生风险显著升高。由于miR-146a通过负反馈回路诱导基因产物下调,对先天和适应性免疫应答会诱导免疫调节作用,该miRNA上的SNP位点与癌症治疗预防相关[34]。SNP位点rs57095329、rs6864584位于miR-146a的启动子区域,rs57095329位于序列上游17 kb处[35−36]。Luo等[35]发现rs57095329在亚洲人中与风险相关的G等位基因与红斑性狼疮患者中的miR-146a的表达降低有关。Hefzy等[37]在慢性乙型肝炎病毒感染患者中发现rs57095329 病例组中AG和GG基因型的频率高于对照组,表明rs57095329可作为埃及人群中慢性乙型肝炎病毒致病的潜在危险因素。笔者研究发现与上述结果一致。对rs57095329相关作用机制的初步探索结果提示,rs57095329对子宫组织中SPI1的表达有影响。转录因子 SPI1通常通过调控细胞分化而发挥作用,也可作为单体与不同的DNA结合蛋白协同作用以激活靶基因转录[38]。2019年,Tao 等[39]研究结果证实,SPI1可以被募集到PARP9启动子并激活其转录来促进宫颈癌细胞的侵袭性。此外,笔者注意到不同研究中对rs57095329的分析结果存在不一致性,这可能是由于rs57095329位点在不同疾病中发挥的作用并不统一。各研究中人群的遗传背景差异以及样本量的不同也是值得考虑的重要影响因素。因此,未来需要对rs57095329位点进行更深入地研究,明确其与不同疾病之间的联系。
本次研究发现rs6864584位点与CIN的发生风险无相关性。部分研究所得结果与笔者的结果是一致的。Zhang等[40]在自身免疫性疾病易感性研究中表明,rs6864584 C等位基因与患病风险的降低相关,但并不显著。此外,部分研究与笔者的结果不一致。例如Salimi等[41]发现rs6864584 T/C降低了TT+TC下自发性反复自然流产的风险。rs6864584在不同研究中存在差异,未来需要在更丰富的队列中进行进一步的考察。
综上所述,本研究发现在CIN组中miR-146a基因SNP位点rs57095329的A等位基因分布频率低于对照组,推测该等位基因可能降低了CIN的发生风险。rs6864584位点与CIN的发生风险无相关性。miR-146a-rs57095329在宫颈癌中发挥的功能有必要进行更深入的研究。
-
表 1 SNP位点的等位基因和基因型在对照组和CIN组中的分布特征[n (%)]
Table 1. Distribution characteristics of allele and genotype at SNP loci in the control group and CIN group [n (%)]
SNPs 等位基因/基因型 对照组 CIN组 HWE 对照组 vs CIN组 χ2 P χ2 P OR (95%CI) rs57095329 A 370(82.2) 132(68.8) 0.742 0.389 14.325 < 0.001* 0.48(0.32~0.70) G 80(17.8) 60(31.2) A/A 154(68.4) 43(44.8) 15.888 < 0.001* A/G 62(27.6) 46(47.9) G/G 9(4.0) 7(7.3) rs6864584 C 38(8.4) 13(6.8) 0.116 0.733 0.515 0.473 0.79(0.41~1.51) T 412(91.6) 179(93.2) C/C 2(0.9) 0(0.0) 1.014 0.602 C/T 34(15.1) 13(13.5) T/T 189(84.0) 83(86.5) *P < 0.025。 表 2 SNP位点在对照组和CIN中的遗传模式分析[n (%)]
Table 2. Genetic model analysis of SNP loci in the control and CIN groups [n (%)]
SNPs 模型 基因型 对照组 CIN组 对照组 vs CIN组 χ2 P OR (95%CI) rs57095329 共显性 A/A 154(68.4) 43 (44.8) 14.555 < 0.001* 1.00 A/G 62 (27.6) 46 (47.9) 2.66(1.60~4.42) G/G 9 (4.0) 7 (7.3) 2.79(0.98~7.91) 显性 A/A 154(68.4) 43 (44.8) 15.879 < 0.001* 1.00 A/G-G/G 71 (31.6) 53 (55.2) 2.67(1.64~4.37) 隐性 A/A-A/G 216(96.0) 89 (92.7) 1.539 0.230 1.00 G/G 9 (4.0) 7 (7.3) 1.89(0.68~5.23) 超显性 A/A-G/G 163(72.4) 50 (52.1) 12.496 < 0.001* 1.00 A/G 62 (27.6) 46 (47.9) 2.42(1.47~3.97) 逻辑累加 --- --- --- 17.055 < 0.001* 2.12(1.42~3.16) rs6864584 共显性 T/T 189(84.0) 83 (86.5) 0.155 0.450 1.00 T/C 34 (15.1) 13 (13.5) 0.87(0.44~1.73) C/C 2 (0.9) 0 (0.0) --- 显性 T/T 189(84.0) 83 (86.5) 0.314 0.570 1.00 T/C-C/C 36 (16.0) 13 (13.5) 0.82(0.41~1.63) 隐性 T/T-T/C 223(99.1) 96(100.0) 0.859 0.230 1.00 C/C 2 (0.9) 0 (0.0) --- 超显性 T/T-C/C 191(84.9) 83 (86.5) 0.133 0.710 1.00 T/C 34 (15.1) 13 (13.5) 0.88(0.44~1.75) 逻辑累加 --- --- --- 0.519 0.470 0.79(0.41~1.51) *P < 0.05。 -
[1] Jemal A,Bray F,Center M M,et al. Global cancer statistics[J]. CA Cancer J Clin,2011,61(2):69-90. doi: 10.3322/caac.20107 [2] Chen W,Zheng R,Baade P D,et al. Cancer statistics in China,2015[J]. CA Cancer J Clin,2016,66(2):115-132. doi: 10.3322/caac.21338 [3] De freitas A C,Gurgel A P,Chagas B S,et al. Susceptibility to cervical cancer: An overview[J]. Gynecol Oncol,2012,126(2):304-311. doi: 10.1016/j.ygyno.2012.03.047 [4] Zur hausen H. Papillomaviruses in the causation of human cancers-A brief historical account[J]. Virology,2009,384(2):260-265. doi: 10.1016/j.virol.2008.11.046 [5] Siegler E,Shiner M,Segev Y,et al. Prevalence and genotype distribution of HPV types in women at risk for cervical neoplasia in israel[J]. Isr Med Assoc J,2017,19(10):635-639. [6] Virolainen S J,Vonhandorf A,Viel K C M F,et al. Gene–environment interactions and their impact on human health[J]. Genes & Immunity,2023,24(1):1-11. [7] Crosbie E J,Einstein M H,Franceschi S,et al. Human papillomavirus and cervical cancer[J]. Lancet,2013,382(9895):889-899. doi: 10.1016/S0140-6736(13)60022-7 [8] Fang J,Li Y,Zhang J,et al. Correlation between polymorphisms in microRNA-regulated genes and cervical cancer susceptibility in a Xinjiang Uygur population[J]. Oncotarget,2017,8(19):31758-31764. doi: 10.18632/oncotarget.15970 [9] 李娅亨,杨希,杨佳,等. miR-155和miR-200b基因多态性与云南汉族人群宫颈癌及宫颈上皮内瘤变的相关性[J]. 贵州医科大学学报,2021,46(5):504-510. [10] 刘伟鹏,许金美,杨佳,等. miR-34a,miR-155及miR-486基因多态性与宫颈癌前病变和宫颈癌相关性研究[J]. 中华肿瘤防治杂志,2022,29(7):488-493. [11] Bartel D P. Metazoan microRNAs[J]. Cell,2018,173(1):20-51. doi: 10.1016/j.cell.2018.03.006 [12] 张云云. EGFL7和miR-126参与肺癌发生风险的遗传分析和功能研究 [D]. 北京:北京协和医学院,2022. [13] Wang J Y,Chen L J. The role of miRNAs in the invasion and metastasis of cervical cancer[J]. Biosci Rep,2019,39(3):BSR20181377. doi: 10.1042/BSR20181377 [14] Jia H,Cao M,Hao S,et al. Prediction of prognosis,immune infiltration and immunotherapy response with N6-methyladenosine-related lncRNA clustering patterns in cervical cancer[J]. Scientific Reports,2022,12(1):17256. doi: 10.1038/s41598-022-20162-2 [15] Ma Q,Yu W,Li Z,et al. Circ_0081723 enhances cervical cancer progression and modulates CREBRF via sponging miR-545-3p[J]. Naunyn Schmiedebergs Arch Pharmacol,2024,397(11):8839-8852. doi: 10.1007/s00210-024-03175-8 [16] Gao W,Hua J,Jia Z,et al. Expression of miR-146a-5p in breast cancer and its role in proliferation of breast cancer cells[J]. Oncol Lett,2018,15(6):9884-9888. [17] Sandhu R,Rein J,D'arcy M,et al. Overexpression of miR-146a in basal-like breast cancer cells confers enhanced tumorigenic potential in association with altered p53 status[J]. Carcinogenesis,2014,35(11):2567-2575. doi: 10.1093/carcin/bgu175 [18] Yue C,Wang M,Ding B,et al. Polymorphism of the pre-miR-146a is associated with risk of cervical cancer in a Chinese population[J]. Gynecol Oncol,2011,122(1):33-37. doi: 10.1016/j.ygyno.2011.03.032 [19] Pecorelli S. Revised FIGO staging for carcinoma of the vulva,cervix,and endometrium[J]. Int J Gynaecol Obstet,2009,105(2):103-104. doi: 10.1016/j.ijgo.2009.02.012 [20] Schiffman M,Castle P E,Jeronimo J,et al. Human papillomavirus and cervical cancer[J]. Lancet,2007,370(9590):890-907. doi: 10.1016/S0140-6736(07)61416-0 [21] 郭妮,张承,洪超,等. KRAS基因3'UTR多态性与云南汉族人群宫颈癌及宫颈上皮内瘤变的相关性[J]. 昆明医科大学学报,2024,45(2):14-22. doi: 10.12259/j.issn.2095-610X.S20240203 [22] 牛志鑫,汤丽华,史磊,等. MAPK1与NRAS基因多态性与云南汉族人群宫颈上皮内瘤变的相关性[J]. 昆明医科大学学报,2024,45(5):8-15. doi: 10.12259/j.issn.2095-610X.S20240502 [23] Shi Y Y,He L. SHEsis,a powerful software platform for analyses of linkage disequilibrium,haplotype construction,and genetic association at polymorphism loci[J]. Cell Res,2005,15(2):97-98. doi: 10.1038/sj.cr.7290272 [24] Hu Z,Zhu D,Wang W,et al. Genome-wide profiling of HPV integration in cervical cancer identifies clustered genomic hot spots and a potential microhomology-mediated integration mechanism[J]. Nat Genet,2015,47(2):158-163. doi: 10.1038/ng.3178 [25] Zhou X,Chen X,Hu L,et al. Polymorphisms involved in the miR-218-LAMB3 pathway and susceptibility of cervical cancer,a case-control study in Chinese women[J]. Gynecol Oncol,2010,117(2):287-290. doi: 10.1016/j.ygyno.2010.01.020 [26] Xie K,Chen M,Zhu M,et al. A polymorphism in miR-1262 regulatory region confers the risk of lung cancer in Chinese population[J]. Int J Cancer,2017,141(5):958-966. doi: 10.1002/ijc.30788 [27] Mir R,Al balawi I A,Duhier F M A. Involvement of microRNA-423 gene variability in breast cancer progression in saudi arabia[J]. Asian Pac J Cancer Prev,2018,19(9):2581-2589. [28] Yan Z,Zhou Z,Li C,et al. Polymorphisms in miRNA genes play roles in the initiation and development of cervical cancer[J]. J Cancer,2019,10(20):4747-4753. doi: 10.7150/jca.33486 [29] Wu Y,Hao X,Feng Z,et al. Genetic polymorphisms in miRNAs and susceptibility to colorectal cancer[J]. Cell Biochem Biophys,2015,71(1):271-278. doi: 10.1007/s12013-014-0195-y [30] Liu H,Zhou Y,Liu Q,et al. Association of miR-608 rs4919510 polymorphism and cancer risk: A meta-analysis based on 13,664 subjects[J]. Oncotarget,2017,8(23):37023-37031. doi: 10.18632/oncotarget.9509 [31] Bastami M,Choupani J,Saadatian Z,et al. Evidences from a systematic review and meta-analysis unveil the role of miRNA polymorphisms in the predisposition to female neoplasms[J]. Int J Mol Sci,2019,20(20):5088. doi: 10.3390/ijms20205088 [32] Srivastava S,Singh S,Fatima N,et al. Pre-microRNA gene polymorphisms and risk of cervical squamous cell carcinoma[J]. J Clin Diagn Res,2017,11(9):GC01-GC04. [33] Min P,Li W,Zeng D,et al. A single nucleotide variant in microRNA-1269a promotes the occurrence and process of hepatocellular carcinoma by targeting to oncogenes SPATS2L and LRP6[J]. Bull Cancer,2017,104(4):311-320. doi: 10.1016/j.bulcan.2016.11.021 [34] Mortazavi-jahromi S S,Aslani M,Mirshafiey A. A comprehensive review on miR-146a molecular mechanisms in a wide spectrum of immune and non-immune inflammatory diseases[J]. Immunology Letters,2020,227(1):8-27. [35] Luo X,Yang W,Ye D Q,et al. A functional variant in microRNA-146a promoter modulates its expression and confers disease risk for systemic lupus erythematosus[J]. PLoS Genet,2011,7(6):e1002128. doi: 10.1371/journal.pgen.1002128 [36] Cammaerts S,Strazisar M,De rijk P,et al. Genetic variants in microRNA genes: Impact on microRNA expression,function,and disease[J]. Front Genet,2015,6(1):186. [37] Hefzy E M,Hassuna N A,Shaker O G,et al. miR-155 T/A (rs767649) and miR-146a A/G (rs57095329) single nucleotide polymorphisms as risk factors for chronic hepatitis B virus infection among Egyptian patients[J]. PLoS One,2021,16(8):e0256724. doi: 10.1371/journal.pone.0256724 [38] Yu M,Al-dallal S,Al-haj L,et al. Transcriptional regulation of the proto-oncogene Zfp521 by SPI1 (PU. 1) and HOXC13[J]. Genesis,2016,54(10):519-533. doi: 10.1002/dvg.22963 [39] Tao L,Wang X,Zhou Q. Long noncoding RNA SNHG16 promotes the tumorigenicity of cervical cancer cells by recruiting transcriptional factor SPI1 to upregulate PARP9[J]. Cell Biol Int,2020,44(3):773-784. doi: 10.1002/cbin.11272 [40] Zhang J,Tan H,Cao Q,et al. Meta-analysis of miRNA variants associated with susceptibility to autoimmune disease[J]. Dis Markers,2021,2021(1):9978460. [41] Salimi S,Sargazi S,Mollashahi B,et al. Association of polymorphisms in miR146a,an inflammation-associated microRNA,with the risk of idiopathic recurrent spontaneous miscarriage: A case-control study[J]. Dis Markers,2022,2022(1):1495082. -