留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

槲皮素对BMSCs成骨分化的影响及作用机制

徐静逍 刘佳 姚姝 张希 李江 崔桂琴 易小玲 李东云

徐静逍, 刘佳, 姚姝, 张希, 李江, 崔桂琴, 易小玲, 李东云. 槲皮素对BMSCs成骨分化的影响及作用机制[J]. 昆明医科大学学报, 2025, 46(5): 30-37. doi: 10.12259/j.issn.2095-610X.S20250504
引用本文: 徐静逍, 刘佳, 姚姝, 张希, 李江, 崔桂琴, 易小玲, 李东云. 槲皮素对BMSCs成骨分化的影响及作用机制[J]. 昆明医科大学学报, 2025, 46(5): 30-37. doi: 10.12259/j.issn.2095-610X.S20250504
Jingxiao XU, Jia LIU, Shu YAO, Xi ZHANG, Jiang LI, Guiqin CUI, Xiaoling YI, Dongyun LI. Effects and Mechanism of Quercetin on Osteogenic Differentiation of BMSCs[J]. Journal of Kunming Medical University, 2025, 46(5): 30-37. doi: 10.12259/j.issn.2095-610X.S20250504
Citation: Jingxiao XU, Jia LIU, Shu YAO, Xi ZHANG, Jiang LI, Guiqin CUI, Xiaoling YI, Dongyun LI. Effects and Mechanism of Quercetin on Osteogenic Differentiation of BMSCs[J]. Journal of Kunming Medical University, 2025, 46(5): 30-37. doi: 10.12259/j.issn.2095-610X.S20250504

槲皮素对BMSCs成骨分化的影响及作用机制

doi: 10.12259/j.issn.2095-610X.S20250504
基金项目: 云南省科技厅中医联合专项-青年项目(202101AZ070001-132);(202101AZ070001-130);(202101AZ070001-319);昆明市卫生健康委员会卫生科研课题项目(2022-16-01-008)
详细信息
    作者简介:

    徐静逍(1986~),云南昆明人,医学硕士,主管药师,主要从事中药临床药学研究工作

    通讯作者:

    易小玲,E-mail:yixl666@163.com

    李东云,E-mail:602370674@qq.com

  • 中图分类号: R735.7

Effects and Mechanism of Quercetin on Osteogenic Differentiation of BMSCs

  • 摘要:   目的  探究槲皮素对骨髓间充质干细胞(bone marrow mesenchymal stem cells,BMSCs)成骨分化的影响及其作用机制。  方法  将BMSCs分为空白对照组(Control)和槲皮素(Quercetin)低剂量组(4.8 mL/kg)、中剂量组(9.6 mL/kg)、高剂量组(19.2 mL/kg)分别用含药血清进行干预,而阳性对照组用成骨分化培养基(Osteogenic differentiation medium)处理,采用流式细胞仪分析细胞周期,MTT法评估细胞增殖水平,碱性磷酸酶(alkaline phosphatase,ALP)检测试剂盒测定细胞活性,茜素红染色观察钙化结节形成。通过Real-time PCR和Western Blot检测β-连环蛋白(β-catenin)及成骨分化关键因子Runt相关转录因子2(runt-related transcription factor 2,RUNX2)和骨钙素(osteocalcin,OCN)的表达水平。  结果  与对照组相比,槲皮素含药血清促进BMSCs增殖(P = 0.000205P = 0.000063),并增强成骨分化后的钙结节形成,成骨活性和ALP活性。Western Blot和PCR结果显示,槲皮素调成骨分化过程中β-catenin (P < 0.0001)、RUNX2 (P < 0.0001)及OCN (P < 0.0001)的mRNA和蛋白表达。  结论  槲皮素能有效促进BMSCs成骨分化,其机制可能通过激活Wnt/β-catenin信号通路,上调成骨相关转录因子RUNX2的表达来实现。
  • 图  1  槲皮素对BMSCs细胞活力的影响($ \bar x \pm s $,n = 3)

    与Control组比较,*P < 0.05,**P < 0.01,***P < 0.001。

    Figure  1.  Effect of quercetin on cell viability of BMSCs ($ \bar x \pm s $,n = 3)

    图  2  槲皮素对BMSCs细胞周期的影响($ \bar x \pm s $,n = 3)

    与Control组比较,*P < 0.05,**P < 0.01,***P < 0.001。

    Figure  2.  Effect of quercetin on the cell cycle of BMSCs ($ \bar x \pm s $,n = 3)

    图  3  槲皮素对BMSCs中ALP活性的影响($ \bar x \pm s $,n = 3)

    与Control组比较,**P < 0.01,***P < 0.001。

    Figure  3.  Effect of quercetin on ALP activity in BMSCs ($ \bar x \pm s $,n = 3)

    图  4  各试验组茜素红染色(200×,Scale bar = 100 μm)

    Figure  4.  Alizarin red staining for each test group (200×,Scale bar = 100 μm)

    图  5  槲皮素对β-catenin、RUNX2和OCN mRNA表达的影响($ \bar x \pm s $,n = 3)

    A:BMSCs中β-catenin的mRNA表达量;B:BMSCs中RUNX2的mRNA表达量;C:BMSCs中OCN的mRNA表达量;与Control组比较,**P < 0.01,***P < 0.001。

    Figure  5.  Effect of quercetin on mRNA expression of β-catenin,RUNX2 and OCN ($ \bar x \pm s $,n = 3)

    图  6  槲皮素对β-catenin、RUNX2和OCN蛋白表达的影响($ \bar x \pm s $,n = 3)

    A:BMSCs中β-catenin、RUNX2和OCN的蛋白表达电泳图;B:BMSCs中β-catenin的蛋白表达量;C:BMSCs中RUNX2的蛋白表达量;D:BMSCs中OCN的蛋白表达量;与Control组比较,*P < 0.05,**P < 0.01,***P < 0.001。

    Figure  6.  Effect of quercetin on the expression of β-catenin,RUNX2 and OCN proteins ($ \bar x \pm s $,n = 3)

    表  1  BMSCs的细胞周期分布($\bar x \pm s $,%,n = 3)

    Table  1.   Cell cycle distribution of BMSCs ($\bar x \pm s $,%,n = 3)

    实验分组 G1(%) S(%) G2(%)
    Control 71.4 ± 0.91 7.87 ± 1.44 16.85 ± 1.08
     quercetin+4.8 mL/kg 65.41 ± 3.47* 7.97 ± 1.26 22.9 ± 5.29
     quercetin+9.6 mL/kg 60.11 ± 1.92** 11.73 ± 4.15 22.27 ± 4.36
     quercetin+19.2 mL/kg 54.33 ± 2.96** 12.14 ± 4.52 28.48 ± 3.7**
    Osteogenic differentiation medium 48.66 ± 3.03*** 12.81 ± 2.99 38.53 ± 3.62***
     多组间F 34.81 1.709 13.52
     多组间P <0.0001*** 0.2241 0.0005***
      与Control组比较,*P < 0.05,**P < 0.01,***P < 0.001。
    下载: 导出CSV
  • [1] Qian D,Chen Y,Qiu X,et al. Hyperin up-regulates miR-7031-5P to promote osteogenic differentiation of MC3T3-E1 cells[J]. Histol Histopathol,2023,38(10):1219-1229.
    [2] Kelly J J,Garapati S S. Combination therapies in the treatment of osteoporosis[J]. Curr Opin Endocrinol Diabetes Obes,2019,26(6):291-295. doi: 10.1097/MED.0000000000000507
    [3] Guo Y,Chi X,Wang Y,et al. Mitochondria transfer enhances proliferation,migration,and osteogenic differentiation of bone marrow mesenchymal stem cell and promotes bone defect healing[J]. Stem Cell Res Ther,2020,11(1):245-246. doi: 10.1186/s13287-020-01704-9
    [4] Garg P,Mazur M M,Buck A C,et al. Prospective review of mesenchymal stem cells differentiation into osteoblasts[J]. Orthop Surg,2017,9(1):13-19. doi: 10.1111/os.12304
    [5] Zhou W,Lin J,Zhao K,et al. Single-cell profiles and clinically useful properties of human mesenchymal stem cells of adipose and bone marrow origin[J]. Am J Sports Med,2019,47(7):1722-1733. doi: 10.1177/0363546519848678
    [6] Chiarini F,Paganelli F,Martelli A M,et al. The role played by Wnt/β-catenin signaling pathway in acute lymphoblastic leukemia[J]. Int J Mol Sci,2020,21(3):1-5.
    [7] Shen J,Sun Y,Liu X,et al. EGFL6 regulates angiogenesis and osteogenesis in distraction osteogenesis via Wnt/β-catenin signaling[J]. Stem Cell Res Ther,2021,12(1):415-418. doi: 10.1186/s13287-021-02487-3
    [8] Zhang Q,Chang B,Zheng G,et al. Quercetin stimulates osteogenic differentiation of bone marrow stromal cells through miRNA-206/connexin 43 pathway[J]. Am J Transl Res,2020,12(5):2062-2070.
    [9] Wang N,Wang L,Yang J,et al. Quercetin promotes osteogenic differentiation and antioxidant responses of mouse bone mesenchymal stem cells through activation of the AMPK/SIRT1 signaling pathway[J]. Phytother Res,2021,35(5):2639-2650. doi: 10.1002/ptr.7010
    [10] Yuan Z,Min J,Zhao Y,et al. Quercetin rescued TNF-alpha-induced impairments in bone marrow-derived mesenchymal stem cell osteogenesis and improved osteoporosis in rats[J]. Am J Transl Res,2018,10(12):4313-4321.
    [11] Mohamed-Ahmed S,Fristad I,Lie S A,et al. Adipose-derived and bone marrow mesenchymal stem cells: a donor-matched comparison[J]. Stem Cell Res Ther,2018,9(1):168-215. doi: 10.1186/s13287-018-0914-1
    [12] 廖锋,刘瑶,刘航航,等. 当归多糖对高糖状态下大鼠骨髓间充质干细胞成骨向分化的影响[J]. 华西口腔医学杂志,2019,37(2):193-199. doi: 10.7518/hxkq.2019.02.012
    [13] 金芳全,樊成虎,唐晓栋,等. 续断提取物对骨质疏松性大鼠信号通路作用的研究进展[J]. 中国骨质疏松杂志,2023,29(7):1016-1020. doi: 10.3969/j.issn.1006-7108.2023.07.016
    [14] 白耘豪,钟镇阳,宋超. 柚皮苷在促大鼠骨髓间充质干细胞骨向分化过程中对丝裂原活化蛋白激酶信号通路的影响[J]. 中国药物与临床,2024,24(2):107-110.
    [15] Wattel A,Kamel S,Mentaverri R,et al. Potent inhibitory effect of naturally occurring flavonoids quercetin and kaempferol on in vitro osteoclastic bone resorption[J]. Biochem Pharmacol,2003,65(1):35-42. doi: 10.1016/S0006-2952(02)01445-4
    [16] Xiao Y,Wei R,Yuan Z,et al. Rutin suppresses FNDC1 expression in bone marrow mesenchymal stem cells to inhibit postmenopausal osteoporosis[J]. Am J Transl Res,2019,11(10):6680-6690.
    [17] Li Y,Wang J,Chen G,et al. Quercetin promotes the osteogenic differentiation of rat mesenchymal stem cells via mitogen-activated protein kinase signaling[J]. Exp Ther Med,2015,9(6):2072-2080. doi: 10.3892/etm.2015.2388
    [18] Zhao Z,Zhao M,Xiao G,et al. Gene transfer of the Runx2 transcription factor enhances osteogenic activity of bone marrow stromal cells in vitro and in vivo[J]. Mol Ther,2005,12(2):247-253. doi: 10.1016/j.ymthe.2005.03.009
    [19] Xiao Y,Xie X,Chen Z,et al. Advances in the roles of ATF4 in osteoporosis[J]. Biomed Pharmacother,2023,169(1):115864-115877.
    [20] Bian W,Xiao S,Yang L,et al. Quercetin promotes bone marrow mesenchymal stem cell proliferation and osteogenic differentiation through the H19/miR-625-5p axis to activate the Wnt/β-catenin pathway[J]. BMC Complement Med Ther,2021,21(1):243-255. doi: 10.1186/s12906-021-03418-8
    [21] Yu G Y,Zheng G Z,Chang B,et al. Naringin stimulates osteogenic differentiation of rat bone marrow stromal cells via activation of the notch signaling pathway[J]. Stem Cells Int,2016,2016(1):8-16.
    [22] Asano N,Takeuchi A,Imatani A,et al. Wnt signaling and aging of the gastrointestinal tract[J]. Int J Mol Sci,2022,23(20):12-21.
    [23] Gao Y,Chen N,Fu Z,et al. Progress of wnt signaling pathway in osteoporosis[J]. Biomolecules,2023,13(3):483-506. doi: 10.3390/biom13030483
    [24] Gao J,Liao Y,Qiu M,et al. Wnt/β-catenin signaling in neural stem cell homeostasis and neurological diseases[J]. Neuroscientist,2021,27(1):58-72. doi: 10.1177/1073858420914509
    [25] Yang Y,Fan J,Xu H,et al. Long noncoding RNA LYPLAL1-AS1 regulates adipogenic differentiation of human mesenchymal stem cells by targeting desmoplakin and inhibiting the Wnt/β-catenin pathway[J]. Cell Death Discov,2021,7(1):105-121. doi: 10.1038/s41420-021-00500-5
    [26] Chen Y,Whetstone H C,Lin A C,et al. Beta-catenin signaling plays a disparate role in different phases of fracture repair: implications for therapy to improve bone healing[J]. PLoS Med,2007,4(7):e249-263. doi: 10.1371/journal.pmed.0040249
    [27] 樊梅,唐芳,马武开,等. Runx2基因参与Wnt/β-catenin信号通路中骨代谢疾病的研究进展[J]. 风湿病与关节炎,2019,8(10):68-71+75. doi: 10.3969/j.issn.2095-4174.2019.10.016
    [28] Zhang C,Hao Y,Sun Y,et al. Quercetin suppresses the tumorigenesis of oral squamous cell carcinoma by regulating microRNA-22/WNT1/β-catenin axis[J]. J Pharmacol Sci,2019,140(2):128-136. doi: 10.1016/j.jphs.2019.03.005
  • [1] 张明慧, 温江涛, 辛小梅, 张宝惠.  骨髓间充质干细胞移植对脊髓损伤后神经病理性疼痛大鼠的影响以及对LPS诱导神经元细胞的作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20250709
    [2] 蒲龙, 周旋然, 江陈榕, 李云轩, 袁勇.  抑制PPARγ表达对BMSCs成骨分化的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240903
    [3] 钱石兵, 史会萍, 李艳秋, 杨镕羽, 段开文.  根尖牙乳头干细胞成骨分化的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240926
    [4] 杨镕羽, 宋飞, 黄浩, 段开文, 向盈盈.  骨髓间充质干细胞在口腔医学中的应用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230323
    [5] 钱石兵, 张凌鹏, 殷凌云, 李昌全, 李虎, 于鸿滨.  不同浓度的牙髓干细胞成骨能力的研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230214
    [6] 徐倩, 崔玉梅, 马思明, 林云红, 熊依菁, 宋子珺, 李旭东.  miR-148a-3p靶向SMURF2调节牙髓干细胞和口腔上皮细胞共培养体系成骨分化及牙釉质发育的作用机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231103
    [7] 刘冲, 曹慧, 杨彩彩, 王震.  柚皮苷调控miR-199a-5p/ECE1分子轴促进骨损伤修复, 昆明医科大学学报.
    [8] 魏韩笑, 张爱君, 李强, 金培生.  血管内皮祖细胞外泌体调控骨髓间充质干细胞基因表达谱芯片, 昆明医科大学学报.
    [9] 王福科, 张红, 杨桂然, 肖渝, 何川, 宋恩, 李彦林.  携载增强型绿色荧光蛋白基因慢病毒转染骨髓间充质干细胞示踪方法, 昆明医科大学学报.
    [10] 纪亲龙, 孔祥东, 戚珊红, 李超, 凡军, 沙勇, 王少峰.  杯苋甾酮抑制破骨分化和促进成骨分化的双向作用治疗骨质疏松症, 昆明医科大学学报.
    [11] 赵娴, 韩雪松, 周箐竹, 李杉, 刘流, 王松梅.  EPCs与BMSCs干细胞联合培养体系修复机体骨缺损, 昆明医科大学学报.
    [12] 陈鹏, 阳锡军, 李春满, 刘锋, 阿永俊.  槲皮素对裸鼠肝癌切除术后肿瘤复发的影响及机制, 昆明医科大学学报.
    [13] 徐林, 胡敏, 李钟辉, 范建楠.  骨髓间充质干细胞复合人工支架材料治疗骨缺损的研究进展, 昆明医科大学学报.
    [14] 胡正雄.  TGF-β2和geneX对BrdU标记骨髓间充质干细胞增殖与成骨分化的作用, 昆明医科大学学报.
    [15] 姚寒曦.  HtrA1 及其相关因子MGP、BMP-2 在人牙周膜细胞体外成骨分化和矿化过程中的动态表达, 昆明医科大学学报.
    [16] 阿永俊.  槲皮素对人肝癌高转移细胞基质粘附能力的影响, 昆明医科大学学报.
    [17] 刘锋.  槲皮素对人肝癌高转移细胞生长及侵袭能力的影响, 昆明医科大学学报.
    [18] 戚宗泽.  兔骨髓间充质干细胞的分离、体外培养、鉴定及成脂诱导, 昆明医科大学学报.
    [19] 武斌.  大豆苷元对人乳牙牙髓干细胞增殖和成骨分化的影响, 昆明医科大学学报.
    [20] 体外诱导猪骨髓间充质干细胞向尿路上皮细胞分化的实验研究, 昆明医科大学学报.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  145
  • HTML全文浏览量:  74
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-28
  • 刊出日期:  2025-05-30

目录

    /

    返回文章
    返回