留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PINK1/Parkin通路介导的线粒体自噬在神经退行性疾病发展中的影响研究

武孔佳 豆舒乾 王媛 王旗 杜攀 刘文军

武孔佳, 豆舒乾, 王媛, 王旗, 杜攀, 刘文军. PINK1/Parkin通路介导的线粒体自噬在神经退行性疾病发展中的影响研究[J]. 昆明医科大学学报, 2025, 46(6): 1-8. doi: 10.12259/j.issn.2095-610X.S20250601
引用本文: 武孔佳, 豆舒乾, 王媛, 王旗, 杜攀, 刘文军. PINK1/Parkin通路介导的线粒体自噬在神经退行性疾病发展中的影响研究[J]. 昆明医科大学学报, 2025, 46(6): 1-8. doi: 10.12259/j.issn.2095-610X.S20250601
Kongjia WU, Shuqian DOU, Yuan WANG, Qi WANG, Pan DU, Wenjun LIU. Impact of PINK1/Parkin-Mediated Mitophagy in the Development of Neurodegenerative Diseases[J]. Journal of Kunming Medical University, 2025, 46(6): 1-8. doi: 10.12259/j.issn.2095-610X.S20250601
Citation: Kongjia WU, Shuqian DOU, Yuan WANG, Qi WANG, Pan DU, Wenjun LIU. Impact of PINK1/Parkin-Mediated Mitophagy in the Development of Neurodegenerative Diseases[J]. Journal of Kunming Medical University, 2025, 46(6): 1-8. doi: 10.12259/j.issn.2095-610X.S20250601

PINK1/Parkin通路介导的线粒体自噬在神经退行性疾病发展中的影响研究

doi: 10.12259/j.issn.2095-610X.S20250601
基金项目: 国家自然科学基金(82460444);昆明医科大学研究生创新基金(2024S280)
详细信息
    作者简介:

    武孔佳(1999~),女,云南昭通人,在读硕士研究生,主要从事干细胞与创面愈合研究工作

    通讯作者:

    刘文军,E-mail:liuwenjun@kmmu.edu.cn

  • 中图分类号: R741

Impact of PINK1/Parkin-Mediated Mitophagy in the Development of Neurodegenerative Diseases

More Information
    Corresponding author: 刘文军,男,博士,教授,昆明医科大学第二附属医院烧伤科主任,博士生导师,长期致力于危重烧伤救治、复杂创面修复、瘢痕的临床治疗及基础研究工作。中华医学会烧伤外科分会常委,中国医师协会烧伤科医师分会常委,云南省医学会烧伤与创面修复外科分会主任委员,美国北卡Wake Forest医学院公派访问学者,云南省万人计划“名医”,中华烧伤与创面修复杂志编委,先后主持国家自然科学基金3项,省部级课题3项,发表国内外文章20余篇,获省级科技进步二等奖2项。
  • 摘要: 线粒体不仅是细胞能量代谢中枢,更参与信号转导及活性调控等重要生理过程。线粒体数量异常、mtDNA拷贝数失衡、基因突变累积以及自噬通路异常激活等现象会导致粒体功能障碍甚至细胞器功能障碍,还会激活细胞损伤和死亡的机制,从而导致各种疾病的发病。线粒体自噬作为高度特异性的自噬形式,在细胞器质量监控与稳态平衡中承担核心调控功能。以经典PINK1/Parkin通路介导的线粒体自噬作为切入点,总结线粒体自噬在神经退行性疾病中的作用及相关研究进展,为寻求靶向调控线粒体自噬改善神经退行性疾病的防治新策略提供新的思路。
  • 图  1  PINK1/Parkin通路介导的线粒体自噬

    A:正常线粒体跨膜蛋白PARL蛋白酶切割处理PINK1;B:PINK1蛋白与Parkin介导的线粒体自噬模式图。

    Figure  1.  PINK1/Parkin pathway-mediated mitophagy

    图  2  神经退行性变疾病病理生理机制与线粒体自噬

    Figure  2.  Pathophysiological mechanisms of neurodegenerative diseases and mitophagy

  • [1] Yoshii S R,Mizushima N. Autophagy machinery in the context of mammalian mitophagy[J]. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research,2015,1853(10):2797-2801. doi: 10.1016/j.bbamcr.2015.01.013
    [2] Gan Z Y,Komander D,Callegari S. Reassessing kinetin’ s effect on PINK1 and mitophagy[J]. Autophagy,2024,20(11):2596-2597. doi: 10.1080/15548627.2024.2395144
    [3] Lu X Y,Zhu L Y,Zhu H,et al. Cyclometalated iridium(III)-lonidamine conjugates: Mitochondrial targeting and pyroptosis induction[J]. Journal of Inorganic Biochemistry,2025,266:112852. doi: 10.1016/j.jinorgbio.2025.112852
    [4] Zarkovic N. Roles and functions of ROS and RNS in cellular physiology and pathology[J]. Cells,2020,9(3):767. doi: 10.3390/cells9030767
    [5] Li Y,Zhang W,Zhang Q,et al. Oxidative stress of mitophagy in neurodegenerative diseases: Mechanism and potential therapeutic targets[J]. Archives of Biochemistry and Biophysics,2025,764:110283. doi: 10.1016/j.abb.2024.110283
    [6] Burda R,Burda J,Morochovič R. Ischemic tolerance-a way to reduce the extent of ischemia-reperfusion damage[J]. Cells,2023,12(6):884. doi: 10.3390/cells12060884
    [7] Zhu J,Xu N,Lin H,et al. Remote ischemic preconditioning plays a neuroprotective role in cerebral ischemia-reperfusion mice by inhibiting mitophagy[J]. Heliyon,2024,10(20):e39076. doi: 10.1016/j.heliyon.2024.e39076
    [8] Mao Z,Tian L,Liu J,et al. Ligustilide ameliorates hippocampal neuronal injury after cerebral ischemia reperfusion through activating PINK1/Parkin-dependent mitophagy[J]. Phytomedicine,2022,101:154111. doi: 10.1016/j.phymed.2022.154111
    [9] Li X,Guan L,Liu Z,et al. Ubiquitination of ATAD3A by TRIM25 exacerbates cerebral ischemia-reperfusion injury via regulating PINK1/Parkin signaling pathway-mediated mitophagy[J]. Free Radical Biology and Medicine,2024,224:757-769. doi: 10.1016/j.freeradbiomed.2024.09.029
    [10] Xiao B,Cui Y,Li B,et al. ROS antagonizes the protection of Parkin-mediated mitophagy against aluminum-induced liver inflammatory injury in mice[J]. Food and Chemical Toxicology,2022,165:113126. doi: 10.1016/j.fct.2022.113126
    [11] Fan P,Xie X H,Chen C H,et al. Molecular regulation mechanisms and interactions between reactive oxygen species and mitophagy[J]. DNA and Cell Biology,2019,38(1):10-22. doi: 10.1089/dna.2018.4348
    [12] Tang C,He L,Liu J,et al. Mitophagy: Basic mechanism and potential role in kidney diseases[J]. Kidney Diseases,2015,1(1):71-79. doi: 10.1159/000381510
    [13] Wen J,Pan T,Li H,et al. Role of mitophagy in the hallmarks of aging[J]. Journal of Biomedical Research,2022,37(1):1-14.
    [14] Tintos-Hernández J A,Santana A,Keller K N,et al. Lysosomal dysfunction impairs mitochondrial quality control and is associated with neurodegeneration in TBCK encephaloneuronopathy[J]. Brain Communications,2021,3(4):fcab215. doi: 10.1093/braincomms/fcab215
    [15] Tang M,Rong D,Gao X,et al. A positive feedback loop between SMAD3 and PINK1 in regulation of mitophagy[J]. Cell Discovery,2025,11(1):22. doi: 10.1038/s41421-025-00774-4
    [16] Jin S M,Youle R J. PINK1- and Parkin-mediated mitophagy at a glance[J]. Journal of Cell Science,2012,125(4):795-799. doi: 10.1242/jcs.093849
    [17] Cheng J,Wei L,Li M. Progress in regulation of mitochondrial dynamics and mitochondrial autophagy[J]. Sheng Li Xue Bao: (Acta Physiologica Sinica),2020,72(4):475-487.
    [18] Hu T,Wu C,Jian W,et al. Effect of PINK1 and Parkin gene silencing on sodium arsenite-induced mitophagy in normal rat liver cells (BRL-3A)[J]. Toxicology Research,2022,11(1):52-59. doi: 10.1093/toxres/tfab110
    [19] Kanki T,Furukawa K,Yamashita S. Mitophagy in yeast: Molecular mechanisms and physiological role[J]. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research,2015,1853(10):2756-2765. doi: 10.1016/j.bbamcr.2015.01.005
    [20] Wang Y,Shen J,Chen Y,et al. PINK1 protects against oxidative stress induced senescence of human nucleus pulposus cells via regulating mitophagy[J]. Biochemical and Biophysical Research Communications,2018,504(2):406-414. doi: 10.1016/j.bbrc.2018.06.031
    [21] Bowling J L,Skolfield M C,Riley W A,et al. Temporal integration of mitochondrial stress signals by the PINK1: Parkin pathway[J]. BMC Molecular and Cell Biology,2019,20(1):33. doi: 10.1186/s12860-019-0220-5
    [22] Gao J,Qin S,Jiang C. Parkin-induced ubiquitination of Mff promotes its association with p62/SQSTM1 during mitochondrial depolarization[J]. Acta Biochimica et Biophysica Sinica,2015,47(7):522-529. doi: 10.1093/abbs/gmv044
    [23] Jayatunga D P W,Hone E,Bharadwaj P,et al. Targeting mitophagy in Alzheimer’ s disease[J]. Journal of Alzheimer’ s Disease,2020,78(4):1273-1297. doi: 10.3233/JAD-191258
    [24] Ashok B S,Ajith T A,Sivanesan S. Hypoxia-inducible factors as neuroprotective agent in Alzheimer’ s disease[J]. Clinical and Experimental Pharmacology and Physiology,2017,44(3):327-334. doi: 10.1111/1440-1681.12717
    [25] Hassan W,Noreen H,Rehman S,et al. Association of oxidative stress with neurological disorders[J]. Current Neuropharmacology,2022,20(6):1046-1072. doi: 10.2174/1570159X19666211111141246
    [26] George A J,Gordon L,Beissbarth T,et al. A serial analysis of gene expression profile of the Alzheimer’ s disease Tg2576 mouse model[J]. Neurotoxicity Research,2010,17(4):360-379. doi: 10.1007/s12640-009-9112-3
    [27] Mart í n-Maestro P,Gargini R,Garc í a E,et al. Mitophagy failure in APP and tau overexpression model of Alzheimer’ s disease[J]. Journal of Alzheimer’ s Disease,2019,70(2):525-540. doi: 10.3233/JAD-190086
    [28] Zeng K,Yu X,Mahaman Y A R,et al. Defective mitophagy and the etiopathogenesis of Alzheimer’ s disease[J]. Translational Neurodegeneration,2022,11(1):32. doi: 10.1186/s40035-022-00305-1
    [29] Quinn P M J,Moreira P I,Ambrósio A F,et al. PINK1/PARKIN signalling in neurodegeneration and neuroinflammation[J]. Acta Neuropathologica Communications,2020,8(1):189. doi: 10.1186/s40478-020-01062-w
    [30] Du F,Yu Q,Yan S S. PINK1 activation attenuates impaired neuronal-like differentiation and synaptogenesis and mitochondrial dysfunction in Alzheimer’ s disease trans-mitochondrial cybrid cells[J]. Journal of Alzheimer’ s Disease,2021,81(4):1749-1761. doi: 10.3233/JAD-210095
    [31] Wang X juan,Qi L,Cheng Y fang,et al. PINK1 overexpression prevents forskolin-induced tau hyperphosphorylation and oxidative stress in a rat model of Alzheimer’ s disease[J]. Acta Pharmacologica Sinica,2022,43(8):1916-1927. doi: 10.1038/s41401-021-00810-5
    [32] Dhapola R,Kumari S,Sharma P,et al. Advancements in autophagy perturbations in Alzheimer’ s disease: Molecular aspects and therapeutics[J]. Brain Research,2025,1851:149494. doi: 10.1016/j.brainres.2025.149494
    [33] Tarakad A,Jankovic J. Recent advances in understanding and treatment of Parkinson’ s disease[J]. Faculty Reviews,2020,9:6.
    [34] Rango M,Dossi G,Squarcina L,et al. Brain mitochondrial impairment in early-onset Parkinson’ s disease with or without PINK1 mutation[J]. Movement Disorders,2020,35(3):504-507. doi: 10.1002/mds.27946
    [35] Kazlauskaite A,Muqit M M K. PINK1 and Parkin – mitochondrial interplay between phosphorylation and ubiquitylation in Parkinson’ s disease[J]. The FEBS Journal,2015,282(2):215-223. doi: 10.1111/febs.13127
    [36] Li M X,Mu D Z. Mitophagy and nervous system disease[J]. Zhongguo Dang Dai Er Ke Za Zhi = Chinese Journal of Contemporary Pediatrics,2017,19(6):724-729.
    [37] 沈金峰,胡芳,王福珍,等. 大蒜素调控PINK1/Parkin介导的线粒体自噬改善大鼠尿毒症心肌损伤[J]. 广州中医药大学学报,2025,2(42):448-454.
    [38] Rogers R S,Tungtur S,Tanaka T,et al. Impaired mitophagy plays a role in denervation of neuromuscular junctions in ALS mice[J]. Frontiers in Neuroscience,2017,11:473. doi: 10.3389/fnins.2017.00473
    [39] Granatiero V,Manfredi G. Mitochondrial transport and turnover in the pathogenesis of amyotrophic lateral sclerosis[J]. Biology,2019,8(2):36. doi: 10.3390/biology8020036
    [40] Zhang H,Gao C,Yang D,et al. Urolithin a improves motor dysfunction induced by copper exposure in SOD1G93A transgenic mice via activation of mitophagy[J]. Molecular Neurobiology,2024,62(6):6922-6937
    [41] Gatto E M,Rojas N G,Persi G,et al. Huntington disease: Advances in the understanding of its mechanisms[J]. Clinical Parkinsonism & Related Disorders,2020,3:100056.
    [42] Liu T,Wetzel L,Zhu Z,et al. Disruption of mitophagy flux through the PARL-PINK1 pathway by CHCHD10 mutations or CHCHD10 depletion[J]. Cells,2023,12(24):2781. doi: 10.3390/cells12242781
    [43] Joshi D C,Chavan M B,Gurow K,et al. The role of mitochondrial dysfunction in Huntington’ s disease: Implications for therapeutic targeting[J]. Biomedicine & Pharmacotherapy,2025,183:117827.
    [44] Khalil B,El Fissi N,Aouane A,et al. PINK1-induced mitophagy promotes neuroprotection in Huntington’ s disease[J]. Cell Death & Disease,2015,6(1):e1617.
    [45] Liang Z,Zhao S,Liu Y,et al. The promise of mitochondria in the treatment of glioblastoma: A brief review[J]. Discover Oncology,2025,16(1):142. doi: 10.1007/s12672-025-01891-y
    [46] Yao N,Wang C,Hu N,et al. Inhibition of PINK1/Parkin-dependent mitophagy sensitizes multidrug-resistant cancer cells to B5G1,a new betulinic acid analog[J]. Cell Death & Disease,2019,10(3):232.
  • [1] 张晓霞, 党浩源, 番明谣, 裴环, 赵杰, 崔换天, 海青山.  大车前苷通过促进PINK1/Parkin线粒体自噬途径改善糖尿病周围神经病变的机制, 昆明医科大学学报.
    [2] 廉坤, 李咏梅, 施诚龙, 陈怡兰, 张磊, 杨薇, 许秀峰.  综合生物信息学方法识别精神分裂症状中关键线粒体自噬基因, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20250104
    [3] 聂绍燕, 范苏苏, 朱钰珊, 彭学容, 王洋, 张旋.  喜炎平注射液对脂多糖诱导的急性肺损伤小鼠的保护作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20241105
    [4] 李威, 蒋立虹, 马丽晶, 陈锐, 杨童硕.  铁死亡在心肌病中的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240327
    [5] 谭莹, 秦海燕, 孙翔, 苏彦伊, 王英宝.  丙泊酚调节MPP+诱导的SH-SY5Y细胞线粒体氧化应激和凋亡, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240305
    [6] 陆凤华, 杜兆霖, 章容.  红光照射联合下肢肌力训练对糖尿病周围神经病变患者下肢运动功能、TCSS评分及SOD水平的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230129
    [7] 白文娅, 杨渊, 霍思颖, 杨鑫, 邵建林.  胆绿素治疗作用的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220601
    [8] 董丽, 孙士波, 孙曙光.  灯盏花乙素抗氧化应激机制在防治心脑血管疾病中的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220423
    [9] 薛国强, 卫欣欣, 姚娜, 赵文化.  二甲双胍通过调控PARP-1活性对2型糖尿病肾脏的保护作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210632
    [10] 郭安利, 付昌碧, 杨晓晴, 张士梅, 石正娟.  急性脑梗死患者肺部感染对氧化应激与炎性应激的影响, 昆明医科大学学报.
    [11] 曾庆菊, 李慧, 王晋文.  褪黑素对糖尿病大鼠氧化应激及足细胞凋亡的影响及作用机制, 昆明医科大学学报.
    [12] 戴青里, 孙贵虎, 闫斌, 郭涛, 戴青原.  过氧化氢诱导HUVECs氧化应激模型的构建, 昆明医科大学学报.
    [13] 曾柏瑞.  甲基苯丙胺与HIV-Tat蛋白协同改变大鼠血脑屏障通透性的氧化应激作用机制, 昆明医科大学学报.
    [14] 边海霞.  单纯疱疹病毒性角膜炎抗氧化治疗的临床观察, 昆明医科大学学报.
    [15] 刘松.  1 800 MHz电磁波对大鼠心肌氧化应激的影响, 昆明医科大学学报.
    [16] 丁艳杰.  类风湿合并颈动脉硬化患者血清氧化应激状态与MMPs相关性分析, 昆明医科大学学报.
    [17] 张媛.  1 800 MHz电磁辐射对大鼠皮肤组织氧化应激的影响, 昆明医科大学学报.
    [18] 李若楠.  三七总皂苷调控c-Jun氨基末端激酶改善大鼠肝组织胰岛素抵抗的作用, 昆明医科大学学报.
    [19] 闫庆峰.  木犀草素对冷保存大鼠心脏心功能及氧化应激反应的影响, 昆明医科大学学报.
    [20] 桂莉.  2型糖尿病大鼠骨骼肌氧化应激与胰岛素抵抗的关系, 昆明医科大学学报.
  • 加载中
图(2)
计量
  • 文章访问数:  350
  • HTML全文浏览量:  60
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-05
  • 刊出日期:  2025-06-25

目录

    /

    返回文章
    返回