留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

EGFL7抑制Sestrin2/Nrf2信号通路促进血管生成加剧大鼠糖尿病视网膜病变

李佩 周静 陈佳沁

李佩, 周静, 陈佳沁. EGFL7抑制Sestrin2/Nrf2信号通路促进血管生成加剧大鼠糖尿病视网膜病变[J]. 昆明医科大学学报.
引用本文: 李佩, 周静, 陈佳沁. EGFL7抑制Sestrin2/Nrf2信号通路促进血管生成加剧大鼠糖尿病视网膜病变[J]. 昆明医科大学学报.
Pei LI, Jing ZHOU, Jiaqin CHEN. EGFL7 Inhibits the Sestrin2/Nrf2 Signaling Pathway,promotes Angiogenesis,and aggravates Diabetic Retinopathy in Rats[J]. Journal of Kunming Medical University.
Citation: Pei LI, Jing ZHOU, Jiaqin CHEN. EGFL7 Inhibits the Sestrin2/Nrf2 Signaling Pathway,promotes Angiogenesis,and aggravates Diabetic Retinopathy in Rats[J]. Journal of Kunming Medical University.

EGFL7抑制Sestrin2/Nrf2信号通路促进血管生成加剧大鼠糖尿病视网膜病变

基金项目: 江苏省优势学科建设工程项目(YSHL2101-1251)
详细信息
    作者简介:

    李佩(1983~),男,江苏宿迁人,医学学士,副主任医师,主要从事眼科学研究工作

  • 中图分类号: R363.1

EGFL7 Inhibits the Sestrin2/Nrf2 Signaling Pathway,promotes Angiogenesis,and aggravates Diabetic Retinopathy in Rats

  • 摘要:   目的  基于Sestrin2/核因子红细胞2相关因子2(nuclear factor erythroid 2-related factor 2,Nrf2)信号通路,探究表皮生长因子样结构域7(epidermal growth factor-like domain 7,EGFL7)对糖尿病视网膜病变血管生成的影响。  方法  用大鼠构建糖尿病视网膜病变模型。苏木精-伊红(hematoxylin-eosin,HE)染色用于观察视网膜病理学形态。视网膜胰蛋白酶消化实验用于检测视网膜血管形态。实时定量聚合酶链式反应(real-time quantitative polymerase chain reaction,RT-qPCR)和蛋白免疫印迹(Western blot)分别用于分析视网膜组织EGFL7、Sestrin2、Nrf2、血红素氧合酶1(heme oxygenase-1,HO-1)的mRNA表达以及EGFL7、Sestrin2、分化簇31(cluster of differentiation 31,CD31)、血管内皮生长因子受体2(vascular endothelial growth factor receptor 2,VEGFR2)、Nrf2、HO-1的蛋白表达。相应试剂盒用于检测眼内房水中丙二醛(malondialdehyde,MDA)、超氧化物歧化酶(superoxide dismutase,SOD)、谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px)的水平。  结果  与对照组相比,模型组大鼠的视网膜组织呈现病理学损伤,视网膜组织中血管数量增加,EGFL7、CD31、VEGFR2、MDA升高(P < 0.05),SOD、GSH-Px、Sestrin2、Nrf2、HO-1降低(P < 0.05);与模型组相比,IgG组大鼠的上述病理学指标无显著变化(P > 0.05);与IgG组相比,anti-EGFL7组大鼠视网膜组织的病理学损伤减轻,视网膜组织中血管数量减少,EGFL7、CD31、VEGFR2、MDA降低(P < 0.05),SOD、GSH-Px、Sestrin2、Nrf2、HO-1升高(P < 0.05)。  结论  EGFL7可能通过促进氧化应激来加剧糖尿病视网膜病变大鼠视网膜的血管新生,其机制可能与抑制Sestrin2/Nrf2信号通路相关。
  • 图  1  大鼠视网膜中EGFL7蛋白的表达($ \bar x \pm s $,n = 8)

    A:Western blot条带图;B:EGFL7/GAPDH统计图;C:视网膜中EGFL7 mRNA表达。与对照组相比,*P < 0.05;与IgG组相比,#P < 0.05。

    Figure  1.  Western blot detection of EGFL7 protein expression in the retina of rats in each group ($ \bar x \pm s $,n = 8)

    图  2  HE染色检测各组大鼠的视网膜病理学改变(400×,标尺:50 μm)

    INL内核层、ONL外核层。

    Figure  2.  Retinal pathological changes detected by HE staining in rats in each group (400×,scale: 50 μm)

    图  3  视网膜胰蛋白酶消化实验检测各组大鼠视网膜的血管形态(200×,标尺:100 μm)

    Figure  3.  Vascular morphology of the retina of rats in each group was detected by retinal trypsin digestion experiment (200×,scale: 100 μm)

    图  4  大鼠视网膜中CD31、VEGFR2蛋白的表达($ \bar x \pm s $,n = 8)

    A:Western blot条带图;B:CD31/GAPDH;C:VEGFR2/GAPDH;与对照组相比,*P < 0.05;与IgG组相比,#P < 0.05。

    Figure  4.  The expression of CD31 and VEGFR2 proteins in the retina of rats ($ \bar x \pm s $,n = 8)

    图  5  各组大鼠眼内房水中氧化应激相关指标的比较($ \bar x \pm s $,n = 8)

    A:眼内房水MDA水平;B:眼内房水SOD水平;C:眼内房水GSH-Px水平;与对照组相比,*P < 0.05;与IgG组相比,#P < 0.05。

    Figure  5.  Comparison of oxidative stress-related indexes in intraocular aqueous humor of rats in each group ($ \bar x \pm s $,n = 8)

    图  6  各组大鼠视网膜中Sestrin2、Nrf2、HO-1 mRNA表达的比较($ \bar x \pm s $,n = 8)

    A:视网膜中Sestrin2 mRNA表达;B:视网膜中Nrf2 mRNA表达;C:视网膜中HO-1 mRNA表达;与对照组相比,*P < 0.05;与IgG组相比,#P < 0.05。

    Figure  6.  Comparison of mRNA expressions of Sestrin2,Nrf2 and HO-1 in the retina of rats in different groups ($ \bar x \pm s $,n = 8)

    图  7  Western blot实验检测各组大鼠视网膜中EGFL7分子及Sestrin2/Nrf2信号通路相关分子的表达($ \bar x \pm s $,n = 8)

    A:Western blot条带图;B:Sestrin2/GAPDH;C:Nrf2(总)/GAPDH;D:HO-1/GAPDH;E:Nrf2(胞浆)/GAPDH;F:Nrf2(胞核)/Histone;与对照组相比,*P < 0.05;与IgG组相比,#P < 0.05。

    Figure  7.  Western blot experiment detected the expression of EGFL7 molecules and Sestrin2/Nrf2 signaling pathway-related molecules in the retina of rats in each group ($ \bar x \pm s $,n = 8)

    表  1  引物信息表

    Table  1.   Primer information table

    引物名称 引物序列 引物长度(bp)
    EGFL7-F 5'- TGCTGATGTGGCTTCTGGTGTTG -3' 21
    EGFL7-R 5'- GGTGGTGAGGAAGGGCTGGTAC -3' 22
    Sestrin2-F 5'- CTTCATCCCAGTGGAGGAGATCC -3' 23
    Sestrin2-R 5'- CCAGAAGCTGCTAAGGTAGTCG -3' 21
    Nrf2-F 5'- CCCATTGAGGGCTGTGATCT -3' 20
    Nrf2-R 5'- GCCTTCAGTGTGCTTCTGGTT -3' 20
    HO-1-F 5'- ATTTGTCCGAGGCCTTGAA -3' 19
    HO-1-R 5'- CCAGGGCCGTATAGATATGGTA -3' 22
    GAPDH-F 5'- ACAGCAACAGGGTGGTGGAC -3' 20
    GAPDH-R 5'- TTTGAGGGTGCAGCGAACTT -3' 20
    下载: 导出CSV
  • [1] Teo Z L, Tham Y C, Yu M, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: Systematic review and meta-analysis[J]. Ophthalmology, 2021, 128(11): 1580-1591. doi: 10.1016/j.ophtha.2021.04.027
    [2] Chang W, Lajko M, Fawzi A A. Endothelin-1 is associated with fibrosis in proliferative diabetic retinopathy membranes[J]. PLoS One, 2018, 13(1): e0191285. doi: 10.1371/journal.pone.0191285
    [3] Katari V, Dalal K, Adapala R K, et al. A TRP to pathological angiogenesis and vascular normalization[J]. Compr Physiol, 2024, 14(2): 5389-5406. doi: 10.1002/j.2040-4603.2024.tb00295.x
    [4] Nichol D, Stuhlmann H. EGFL7: A unique angiogenic signaling factor in vascular development and disease[J]. Blood, 2012, 119(6): 1345-1352. doi: 10.1182/blood-2011-10-322446
    [5] Xian Y, Wang X, Yu Y, et al. The mechanism of EGFL7 regulating neovascularization in diabetic retinopathy through the PI3K/AKT/VEGFA pathway[J]. Life Sci, 2024, 340: 122483. doi: 10.1016/j.lfs.2024.122483
    [6] Du X, Wang Y, Gao F. PSAT1 is upregulated by METTL3 to attenuate high glucose-induced retinal pigment epithelial cell apoptosis and oxidative stress[J]. Diagn Pathol, 2024, 19(1): 138. doi: 10.1186/s13000-024-01556-4
    [7] Xi X, Chen Q, Ma J, et al. Sestrin2 ameliorates diabetic retinopathy by regulating autophagy and ferroptosis[J]. J Mol Histol, 2024, 55(2): 169-184. doi: 10.1007/s10735-023-10180-3
    [8] Kishimoto Y, Kondo K, Momiyama Y. The protective role of Sestrin2 in atherosclerotic and cardiac diseases[J]. Int J Mol Sci, 2021, 22(3): 1200. doi: 10.3390/ijms22031200
    [9] Pasha M, Eid A H, Eid A A, et al. Sestrin2 as a novel biomarker and therapeutic target for various diseases[J]. Oxid Med Cell Longev, 2017, 2017: 3296294. doi: 10.1155/2017/3296294
    [10] Yang X, Li D. Tricin attenuates diabetic retinopathy by inhibiting oxidative stress and angiogenesis through regulating Sestrin2/Nrf2 signaling[J]. Hum Exp Toxicol, 2023, 42: 9603271231171642.
    [11] 帅天姣, 王彤彤, 谢伟, 等. 黄芩苷调节IL-33/ST2信号通路对糖尿病视网膜病变大鼠视网膜新生血管生成的影响[J]. 眼科新进展, 2022, 42(9): 685-689.
    [12] Bill M, Pathmanathan A, Karunasiri M, et al. EGFL7 antagonizes NOTCH signaling and represents a novel therapeutic target in acute myeloid leukemia[J]. Clin Cancer Res, 2020, 26(3): 669-678. doi: 10.1158/1078-0432.CCR-19-2479
    [13] Liu G, Feng L, Liu X, et al. O-GlcNAcylation inhibition upregulates Connexin43 expression in the endothelium to protect the tight junction barrier in diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2023, 64(14): 30. doi: 10.1167/iovs.64.14.30
    [14] Hu A, Schmidt M H H, Heinig N. Microglia in retinal angiogenesis and diabetic retinopathy[J]. Angiogenesis, 2024, 27(3): 311-331. doi: 10.1007/s10456-024-09911-1
    [15] Dănilă A I, Ghenciu L A, Stoicescu E R, et al. Aldose reductase as a key target in the prevention and treatment of diabetic retinopathy: A comprehensive review[J]. Biomedicines, 2024, 12(4): 747. doi: 10.3390/biomedicines12040747
    [16] Nichol D, Shawber C, Fitch M J, et al. Impaired angiogenesis and altered Notch signaling in mice overexpressing endothelial Egfl7[J]. Blood, 2010, 116(26): 6133-6143. doi: 10.1182/blood-2010-03-274860
    [17] Badiwala M V, Guha D, Tumiati L, et al. Epidermal growth factor-like domain 7 is a novel inhibitor of neutrophil adhesion to coronary artery endothelial cells injured by calcineurin inhibition[J]. Circulation, 2011, 124(11 Suppl): S197-S203.
    [18] Carvalho M I, Silva-Carvalho R, Prada J, et al. TGFβ in malignant canine mammary tumors: Relation with angiogenesis, immunologic markers and prognostic role[J]. Vet Q, 2024, 44(1): 1-12.
    [19] Yu E, Kim H, Park H, et al. Targeting the VEGFR2 signaling pathway for angiogenesis and fibrosis regulation in neovascular age-related macular degeneration[J]. Sci Rep, 2024, 14(1): 25682. doi: 10.1038/s41598-024-76258-4
    [20] Peng J, Abdulla R, Liu X, et al. Polyphenol-rich extract of Apocynum venetum L. leaves protects human retinal pigment epithelial cells against high glucose-induced damage through polyol pathway and autophagy[J]. Nutrients, 2024, 16(17): 2944. doi: 10.3390/nu16172944
    [21] Xu Y, Yu J. Allicin mitigates diabetic retinopathy in rats by activating phosphatase and tensin homolog-induced kinase 1/parkin-mitophagy and inhibiting oxidative stress-mediated NOD-like receptor family pyrin domain containing 3 inflammasome[J]. J Physiol Investig, 2024, 67(4): 215-224. doi: 10.4103/ejpi.EJPI-D-24-00039
    [22] Hou Z, Wang Z, Zhang J, et al. Effects of cannabidiol on AMPKα2/HIF-1α/BNIP3/NIX signaling pathway in skeletal muscle injury[J]. Front Pharmacol, 2024, 15: 1450513. doi: 10.3389/fphar.2024.1450513
    [23] Datta S, Ghosh S, Bishayee A, et al. Flexion of Nrf2 by tea phytochemicals: A review on the chemopreventive and chemotherapeutic implications[J]. Pharmacol Res, 2022, 182: 106319. doi: 10.1016/j.phrs.2022.106319
    [24] Nakamura S, Noguchi T, Inoue Y, et al. Nrf2 activator RS9 suppresses pathological ocular angiogenesis and hyperpermeability[J]. Invest Ophthalmol Vis Sci, 2019, 60(6): 1943-1952. doi: 10.1167/iovs.18-25745
  • [1] 槐楠, 李睿, 宋广荣, 匡安仁.  探讨雷帕霉素对甲状腺炎大鼠氧化应激的改善作用, 昆明医科大学学报. 2026, 47(1): 1-7.
    [2] 李妍平, Fariha Tasnim Efty, 陆志星, 朱灵英.  APOE4调控LRP1对Aβ25-35诱导的星形胶质细胞氧化应激和炎症反应的作用, 昆明医科大学学报. 2025, 46(11): 18-25. doi: 10.12259/j.issn.2095-610X.S20251103
    [3] 霍楠, 赵军波, 王敏, 安伟乔, 崔翠.  M1/M2型巨噬细胞表达与糖尿病视网膜病变严重程度的关系, 昆明医科大学学报. 2025, 46(11): 100-106. doi: 10.12259/j.issn.2095-610X.S20251113
    [4] 谭莹, 秦海燕, 孙翔, 苏彦伊, 王英宝.  丙泊酚调节MPP+诱导的SH-SY5Y细胞线粒体氧化应激和凋亡, 昆明医科大学学报. 2024, 45(3): 35-41. doi: 10.12259/j.issn.2095-610X.S20240305
    [5] 陆凤华, 杜兆霖, 章容.  红光照射联合下肢肌力训练对糖尿病周围神经病变患者下肢运动功能、TCSS评分及SOD水平的影响, 昆明医科大学学报. 2023, 44(1): 163-167. doi: 10.12259/j.issn.2095-610X.S20230129
    [6] 董丽, 孙士波, 孙曙光.  灯盏花乙素抗氧化应激机制在防治心脑血管疾病中的研究进展, 昆明医科大学学报. 2022, 43(4): 146-151. doi: 10.12259/j.issn.2095-610X.S20220423
    [7] 薛国强, 卫欣欣, 姚娜, 赵文化.  二甲双胍通过调控PARP-1活性对2型糖尿病肾脏的保护作用, 昆明医科大学学报. 2021, 42(6): 29-37. doi: 10.12259/j.issn.2095-610X.S20210632
    [8] 熊煜欣, 汤俊, 蔺汝云, 聂嘉敏, 周敏洁, 邵举薇.  2型糖尿病脑灌注及糖尿病视网膜氧张量的相关性, 昆明医科大学学报. 2021, 42(10): 76-83. doi: 10.12259/j.issn.2095-610X.S20211046
    [9] 王金瑞, 杨莹.  2型糖尿病视网膜病变相关因素研究进展, 昆明医科大学学报. 2019, 40(04): 131-135.
    [10] 曾庆菊, 李慧, 王晋文.  褪黑素对糖尿病大鼠氧化应激及足细胞凋亡的影响及作用机制, 昆明医科大学学报. 2019, 40(10): 62-66.
    [11] 雷霍.  云南省糖尿病眼病的防治研究现状, 昆明医科大学学报. 2016, 37(04): -.
    [12] 曾柏瑞.  甲基苯丙胺与HIV-Tat蛋白协同改变大鼠血脑屏障通透性的氧化应激作用机制, 昆明医科大学学报. 2015, 36(03): -1.
    [13] 边海霞.  糖尿病视网膜病变脂肪因子与血管病变相关因子关系的研究, 昆明医科大学学报. 2015, 36(01): -1.
    [14] 刘松.  1 800 MHz电磁波对大鼠心肌氧化应激的影响, 昆明医科大学学报. 2014, 35(06): -.
    [15] 丁艳杰.  类风湿合并颈动脉硬化患者血清氧化应激状态与MMPs相关性分析, 昆明医科大学学报. 2014, 35(05): -.
    [16] 朱钊.  2型糖尿病家系人群中糖尿病视网膜病变相关因素的分析, 昆明医科大学学报. 2014, 35(09): -1.
    [17] 张媛.  1 800 MHz电磁辐射对大鼠皮肤组织氧化应激的影响, 昆明医科大学学报. 2013, 34(05): -.
    [18] 闫庆峰.  木犀草素对冷保存大鼠心脏心功能及氧化应激反应的影响, 昆明医科大学学报. 2012, 33(02): -.
    [19] 茶雪平.  云南2型糖尿病家系人群中糖尿病视网膜病变的患病情况分析, 昆明医科大学学报. 2012, 33(12): -.
    [20] 桂莉.  2型糖尿病大鼠骨骼肌氧化应激与胰岛素抵抗的关系, 昆明医科大学学报. 2009, 30(01): -.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  32
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-18
  • 网络出版日期:  2026-01-03

目录

    /

    返回文章
    返回