留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HDAC3靶向调控GATA-2影响牙髓干细胞成骨分化的机制

欧阳骞 黄燕飞 殷凌云 张凌鹏 梁婧 于鸿滨

欧阳骞, 黄燕飞, 殷凌云, 张凌鹏, 梁婧, 于鸿滨. HDAC3靶向调控GATA-2影响牙髓干细胞成骨分化的机制[J]. 昆明医科大学学报.
引用本文: 欧阳骞, 黄燕飞, 殷凌云, 张凌鹏, 梁婧, 于鸿滨. HDAC3靶向调控GATA-2影响牙髓干细胞成骨分化的机制[J]. 昆明医科大学学报.
Qian OUYANG, Yanfei HUANG, Lingyun YIN, Lingpeng ZHANG, Jing LIANG, Hongbin YU. Mechanism of HDAC3-Targeted Regulation of GATA-2 Affecting Osteogenic Differentiation of Dental Pulp Stem Cells[J]. Journal of Kunming Medical University.
Citation: Qian OUYANG, Yanfei HUANG, Lingyun YIN, Lingpeng ZHANG, Jing LIANG, Hongbin YU. Mechanism of HDAC3-Targeted Regulation of GATA-2 Affecting Osteogenic Differentiation of Dental Pulp Stem Cells[J]. Journal of Kunming Medical University.

HDAC3靶向调控GATA-2影响牙髓干细胞成骨分化的机制

基金项目: 云南省教育厅科学研究基金项目(2024J0282);云南省科技厅科技计划项目(202401AY070001-300);昆明市卫生健康委员会科研基金项目(2023-08-04-001);云南省教育厅科学研究基金项目(2024J0279)
详细信息
    作者简介:

    欧阳骞(出生年~),女,云南保山人,医学硕士,副主任医师,主要从事口腔修复和种植临床、科研及教学,致力于种植义齿修复,固定义齿修复,各类前牙美学修复,疑难全口义齿及复杂活动义齿修复临床研究工作

    通讯作者:

    于鸿滨,E-mail:yuhongbin6310@163.com

  • 中图分类号: R781.4

Mechanism of HDAC3-Targeted Regulation of GATA-2 Affecting Osteogenic Differentiation of Dental Pulp Stem Cells

  • 摘要:   目的   探讨HDAC3/GATA-2分子轴在人牙髓干细胞(human dental pulp stem cells,hDPSCs)成骨分化中的作用机制。  方法   hDPSCs细胞系通过骨诱导培养基(osteogenic induction medium,OM)培养,构建oe-NC,oe-HDAC3和oe-GATA-2质粒,并转染至细胞中,转染效率通过RT-qPCR和Western blot进行评估。采用碱性磷酸酶(alkaline phosphatase,ALP)染色和茜素红S(alizarin red S,ARS)染色评估ALP活性以及细胞的矿化节点。RT-qPCR和Western Blot检测成骨关键指标COL1A1、ALP、BMP2和RUNX2的表达水平。GST-pull down和免疫共沉淀(co-immunoprecipitation,CO-IP)验证HDAC3与GATA-2的相互作用,免疫荧光(immunofluorescence,IF)染色检测细胞表达。  结果   HDAC3在hDPSCs成骨分化过程中显著降低(P < 0.0001),过表达HDAC3显著减弱ALP染色和活性(P = 0.0001),以及减少了hDPSCs细胞矿化结节的产生。COL1A1(P = 0.0029)、ALP(P = 0.0001)、BMP2(P = 0.0001)和RUNX2(P = 0.0007)的表达水平在过表达HDAC3后被抑制。HDAC3与GATA-2相互作用,与过表达HDAC3降低了细胞中GATA-2的表达(P = 0.0028)。共转染oe-GATA-2后逆转了过表达HDAC3的作用,增加了ALP染色和活性(P = 0.0043)和细胞中的矿化结节。oe-HDAC3+ oe-GATA-2组中COL1A1(P = 0.0001)、ALP(P = 0.0423)、BMP2(P < 0.0001)和RUNX2(P = 0.0005)的表达水平进一步升高。  结论   HDAC3通过靶向负调控GATA-2的表达,抑制了hDPSCs的成骨分化。
  • 图  1  HDAC3在hDPSCs成骨分化过程中的低表达。

    A: RT-qPCR;B:Western blot检测COL1A1、ALP、BMP2、RUNX2和HDAC3的mRNA和蛋白表达;与0 d组相比,*P < 0.05,**P < 0.01,***P < 0.001。

    Figure  1.  Low expression of HDAC3 during osteogenic differentiation of hDPSCs.

    图  2  过表达HDAC3抑制hDPSCs成骨分化

    A:RT-qPCR;B:Western blot检测转染效率;C:ALP染色(Scale bar=100 μm)和ARS染色(Scale bar=200 μm);D:试剂盒检测ALP活性;E:RT-qPCR和F:Western blot检测COL1A1、ALP、BMP2和RUNX2的mRNA和蛋白表达;与NC组相比,*P < 0.05,**P < 0.01,***P < 0.001。

    Figure  2.  Overexpression of HDAC3 inhibits osteogenic differentiation of hDPSCs

    图  3  HDAC3靶向抑制GATA-2的表达

    A:HDAC3靶基因预测;B:GST - pulled down验证HDAC3与GATA-2的结合;C:CO-IP验证HDAC3与GATA-2的相互作用;D:IF检测细胞共定位(Scale bar=20 μm);E:RT-qPCR和F:Western blot检测GATA-2的mRNA和蛋白表达;与NC组相比,*P < 0.05,**P < 0.01,***P < 0.001。

    Figure  3.  HDAC3 targets and inhibits GATA-2 expression

    图  4  HDAC3通过下调GATA-2抑制hDPSCs成骨分化

    A:RT-qPCR;B:Western blot检测转染效率;C:ALP染色(Scale bar=100 μm)和ARS染色(Scale bar=200 μm);D:试剂盒检测ALP活性;E:RT-qPCR和F:Western blot检测COL1A1、ALP、BMP2和RUNX2的mRNA和蛋白表达;与oe-NC组相比,*P < 0.05,**P < 0.01,***P < 0.001;与oe-HDAC3组相比,#P < 0.05,##P < 0.01,###P < 0.001。

    Figure  4.  HDAC3 inhibits hDPSCs osteogenic differentiation through downregulation of GATA-2

    表  1  PCR引物序列

    Table  1.   PCR primer sequences

    基因引物序列(5’-3’)
    HDAC3正向5’-GGTGGTTATACTGTCCGAAAT-3’
    反向5’-AGGCTGAAGTCCCTGCTC-3’
    COL1A1正向5’-AAGGTGTTGTGCGATGACG-3’
    反向5’-ACCACGAGGACCAGAGGGAC-3’
    ALP正向5’-GGCTGGACGGGAAGAATC-3’
    反向5’-GCCTCCGAAGGAGAAGACG-3’
    BMP2正向5’-AACCTGCAACAGCCAACT-3’
    反向5’-GGGAGCCACAATCCAGTC-3’
    RUNX2正向5’-TGGGCTTCCTGCCATCAC-3’
    反向5’-CAGCGTCAACACCATCATTC-3’
    GATA-2正向5’-CTCCTGACCCTAGCACCACG-3’
    反向5’-GGTTCTGCCCATTCATCTTGT-3’
    GAPDH正向5’-TGACCACAGTCCATGCCATCAC-3’
    反向5’-CGCCTGCTTCACCACCTTCTT-3’
    下载: 导出CSV
  • [1] Han Y, You X, Xing W, et al. Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts[J]. Bone Res, 2018, 6: 16. doi: 10.1038/s41413-018-0019-6
    [2] Fernandes G, Yang S. Application of platelet-rich plasma with stem cells in bone and periodontal tissue engineering[J]. Bone Res, 2016, 4: 16036. doi: 10.1038/boneres.2016.36
    [3] Ambrosi T H, Scialdone A, Graja A, et al. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration[J]. Cell Stem Cell, 2017, 20(6): 771-784. e6.
    [4] Chen X Y, Xu S Z, Wang X W, et al. Systematic comparison of biologically active foreign ions-codoped calcium phosphate microparticles on osteogenic differentiation in rat osteoporotic and normal mesenchymal stem cells[J]. Oncotarget, 2017, 8(22): 36578-36590. doi: 10.18632/oncotarget.16618
    [5] Camargo W A, de Vries R, van Luijk J, et al. Diabetes mellitus and bone regeneration: A systematic review and meta-analysis of animal studies[J]. Tissue Eng Part B Rev, 2017, 23(5): 471-479. doi: 10.1089/ten.teb.2016.0370
    [6] Yamada Y, Ito K, Nakamura S, et al. Promising cell-based therapy for bone regeneration using stem cells from deciduous teeth, dental pulp, and bone marrow[J]. Cell Transplant, 2011, 20(7): 1003-1013. doi: 10.3727/096368910X539128
    [7] Ledesma-Martínez E, Mendoza-Núñez V M, Santiago-Osorio E. Mesenchymal stem cells derived from dental pulp: A review[J]. Stem Cells Int, 2016, 2016: 4709572. doi: 10.1155/2016/4709572
    [8] Fu X, Jin L, Ma P, et al. Allogeneic stem cells from deciduous teeth in treatment for periodontitis in miniature swine[J]. J Periodontol, 2014, 85(6): 845-851. doi: 10.1902/jop.2013.130254
    [9] Ge X, Li Z, Jing S, et al. Parathyroid hormone enhances the osteo/odontogenic differentiation of dental pulp stem cells via ERK and P38 MAPK pathways[J]. J Cell Physiol, 2020, 235(2): 1209-1221. doi: 10.1002/jcp.29034
    [10] Edderkaoui M, Xu S, Chheda C, et al. HDAC3 mediates smoking-induced pancreatic cancer[J]. Oncotarget, 2016, 7(7): 7747-7760. doi: 10.18632/oncotarget.6820
    [11] Cantley M D, Bartold P M, Marino V, et al. Histone deacetylase inhibitors and periodontal bone loss[J]. J Periodontal Res, 2011, 46(6): 697-703. doi: 10.1111/j.1600-0765.2011.01392.x
    [12] Schroeder T M, Kahler R A, Li X, et al. Histone deacetylase 3 interacts with runx2 to repress the osteocalcin promoter and regulate osteoblast differentiation[J]. J Biol Chem, 2004, 279(40): 41998-42007. doi: 10.1074/jbc.M403702200
    [13] Ling K W, Ottersbach K, van Hamburg J P, et al. GATA-2 plays two functionally distinct roles during the ontogeny of hematopoietic stem cells[J]. J Exp Med, 2004, 200(7): 871-882. doi: 10.1084/jem.20031556
    [14] Rodrigues N P, Tipping A J, Wang Z, et al. GATA-2 mediated regulation of normal hematopoietic stem/progenitor cell function, myelodysplasia and myeloid leukemia[J]. Int J Biochem Cell Biol, 2012, 44(3): 457-460. doi: 10.1016/j.biocel.2011.12.004
    [15] Kamata M, Okitsu Y, Fujiwara T, et al. GATA2 regulates differentiation of bone marrow-derived mesenchymal stem cells[J]. Haematologica, 2014, 99(11): 1686-1696. doi: 10.3324/haematol.2014.105692
    [16] Lee E C, Kim Y M, Lim H M, et al. The histone deacetylase inhibitor (MS-275) promotes differentiation of human dental pulp stem cells into odontoblast-like cells independent of the MAPK signaling system[J]. Int J Mol Sci, 2020, 21(16): 57-71.
    [17] 任小华. LncRNA LOC101928855调控炎性环境下牙髓干细胞成骨分化的机制研究[D]. 成都: 电子科技大学, 2022.
    [18] Cakouros D, Gronthos S. Epigenetic regulation of bone marrow stem cell aging: Revealing epigenetic signatures associated with hematopoietic and mesenchymal stem cell aging[J]. Aging Dis, 2019, 10(1): 174-189. doi: 10.14336/AD.2017.1213
    [19] Xu S, De Veirman K, Evans H, et al. Effect of the HDAC inhibitor vorinostat on the osteogenic differentiation of mesenchymal stem cells in vitro and bone formation in vivo[J]. Acta Pharmacol Sin, 2013, 34(5): 699-709. doi: 10.1038/aps.2012.182
    [20] Paino F, La Noce M, Tirino V, et al. Histone deacetylase inhibition with valproic acid downregulates osteocalcin gene expression in human dental pulp stem cells and osteoblasts: Evidence for HDAC2 involvement[J]. Stem Cells, 2014, 32(1): 279-289. doi: 10.1002/stem.1544
    [21] Li S, Li M, Liu X, et al. Genetic and chemical screenings identify HDAC3 as a key regulator in hepatic differentiation of human pluripotent stem cells[J]. Stem Cell Reports, 2018, 11(1): 22-31. doi: 10.1016/j.stemcr.2018.05.001
    [22] Bao Y, Chen H, Cai Z, et al. Advanced glycation end products inhibit neural stem cell differentiation via upregulation of HDAC3 expression[J]. Brain Res Bull, 2020, 159: 1-8. doi: 10.1016/j.brainresbull.2020.03.001
    [23] Jonason J H, Xiao G, Zhang M, et al. Post-translational regulation of Runx2 in bone and cartilage[J]. J Dent Res, 2009, 88(8): 693-703. doi: 10.1177/0022034509341629
    [24] Man K, Lawlor L, Jiang L H, et al. The selective histone deacetylase inhibitor MI192 enhances the osteogenic differentiation efficacy of human dental pulp stromal cells[J]. Int J Mol Sci, 2021, 22(10): 5224. doi: 10.3390/ijms22105224
    [25] Ozawa Y, Towatari M, Tsuzuki S, et al. Histone deacetylase 3 associates with and represses the transcription factor GATA-2[J]. Blood, 2001, 98(7): 2116-2123. doi: 10.1182/blood.V98.7.2116
    [26] Janardhan H P, Milstone Z J, Shin M, et al. Hdac3 regulates lymphovenous and lymphatic valve formation[J]. J Clin Invest, 2017, 127(11): 4193-4206. doi: 10.1172/JCI92852
    [27] Xu Y, Takahashi Y, Wang Y, et al. Downregulation of GATA-2 and overexpression of adipogenic gene-PPARgamma in mesenchymal stem cells from patients with aplastic Anemia[J]. Exp Hematol, 2009, 37(12): 1393-1399. doi: 10.1016/j.exphem.2009.09.005
    [28] Yamane T, Kunisada T, Yamazaki H, et al. Sequential requirements for SCL/tal-1, GATA-2, macrophage colony-stimulating factor, and osteoclast differentiation factor/osteoprotegerin ligand in osteoclast development[J]. Exp Hematol, 2000, 28(7): 833-840. doi: 10.1016/S0301-472X(00)00175-2
    [29] 任明诗, 丁羽, 李子涵, 等. 成骨细胞与破骨细胞相互调节作用的研究进展[J]. 中国药理学通报, 2022, 38(6): 822-827.
  • [1] 崔红艳, 张舒扬, 周雯雯.  血清STAT3、HDAC2、Del-1水平在呼吸道合胞病毒感染性肺炎患儿病情及预后评估中的应用, 昆明医科大学学报. 2025, 46(11): 122-129. doi: 10.12259/j.issn.2095-610X.S20251116
    [2] 黄燕飞, 于鸿滨, 殷凌云, 梁婧, 李昌全, 李德宏, 王金缘, 欧阳骞.  NFE2L2/KEAP1在牙周炎中对细胞成骨分化的调控机制, 昆明医科大学学报. 2025, 46(7): 26-37. doi: 10.12259/j.issn.2095-610X.S20250704
    [3] 周锟, 刘亚丽, 李自良, 钱丽萍, 冉丽权, 任娅岚.  miR-34a对人牙周膜干细胞增殖和成骨分化的影响, 昆明医科大学学报. 2025, 46(4): 14-19. doi: 10.12259/j.issn.2095-610X.S20250403
    [4] 徐静逍, 刘佳, 姚姝, 张希, 李江, 崔桂琴, 易小玲, 李东云.  槲皮素对BMSCs成骨分化的影响及作用机制, 昆明医科大学学报. 2025, 46(5): 30-37. doi: 10.12259/j.issn.2095-610X.S20250504
    [5] 蒲龙, 周旋然, 江陈榕, 李云轩, 袁勇.  抑制PPARγ表达对BMSCs成骨分化的影响, 昆明医科大学学报. 2024, 45(9): 17-23. doi: 10.12259/j.issn.2095-610X.S20240903
    [6] 钱石兵, 史会萍, 李艳秋, 杨镕羽, 段开文.  根尖牙乳头干细胞成骨分化的研究进展, 昆明医科大学学报. 2024, 45(9): 168-173. doi: 10.12259/j.issn.2095-610X.S20240926
    [7] 钱石兵, 张凌鹏, 殷凌云, 李昌全, 李虎, 于鸿滨.  不同浓度的牙髓干细胞成骨能力的研究, 昆明医科大学学报. 2023, 44(2): 61-68. doi: 10.12259/j.issn.2095-610X.S20230214
    [8] 徐倩, 崔玉梅, 马思明, 林云红, 熊依菁, 宋子珺, 李旭东.  miR-148a-3p靶向SMURF2调节牙髓干细胞和口腔上皮细胞共培养体系成骨分化及牙釉质发育的作用机制, 昆明医科大学学报. 2023, 44(11): 16-21. doi: 10.12259/j.issn.2095-610X.S20231103
    [9] 李玉晓, 贺铭, 王天蓉, 姚永刚, 王雨.  Si-GATA-3对AR小鼠PBMCs中Th1/Th2细胞亚群功能的体外调节, 昆明医科大学学报. 2022, 43(8): 7-16. doi: 10.12259/j.issn.2095-610X.S20220802
    [10] 周静, 熊萍, 刘超峰, 陈丽琼, 张永辉, 史珂, 聂焱, 刘彦.  牙周膜干细胞BMP-2-PSH复合膜修复新西兰兔牙槽骨缺损, 昆明医科大学学报. 2021, 42(5): 12-17. doi: 10.12259/j.issn.2095-610X.S20210503
    [11] 刘冲, 曹慧, 杨彩彩, 王震.  柚皮苷调控miR-199a-5p/ECE1分子轴促进骨损伤修复, 昆明医科大学学报. 2020, 41(06): 32-38.
    [12] 纪亲龙, 孔祥东, 戚珊红, 李超, 凡军, 沙勇, 王少峰.  杯苋甾酮抑制破骨分化和促进成骨分化的双向作用治疗骨质疏松症, 昆明医科大学学报. 2018, 39(05): 21-28.
    [13] 胡正雄.  TGF-β2和geneX对BrdU标记骨髓间充质干细胞增殖与成骨分化的作用, 昆明医科大学学报. 2016, 37(02): -.
    [14] 韩群超.  人牙髓干细胞的体外分离、培养及鉴定, 昆明医科大学学报. 2015, 36(05): -.
    [15] 姚寒曦.  HtrA1 及其相关因子MGP、BMP-2 在人牙周膜细胞体外成骨分化和矿化过程中的动态表达, 昆明医科大学学报. 2015, 36(08): -1.
    [16] 戚宗泽.  兔骨髓间充质干细胞的分离、体外培养、鉴定及成脂诱导, 昆明医科大学学报. 2013, 34(01): -.
    [17] 武斌.  大豆苷元对人乳牙牙髓干细胞增殖和成骨分化的影响, 昆明医科大学学报. 2012, 33(09): -.
    [18] 体外诱导猪骨髓间充质干细胞向尿路上皮细胞分化的实验研究, 昆明医科大学学报. 2011, 32(11): -.
    [19] 毛希宏.  人脐带间充质干细胞的培养鉴定及其向神经元细胞分化的研究, 昆明医科大学学报. 2011, 32(01): -.
    [20] 李卫国.  骨膜成骨细胞培养活体自体、异体和异种移植成骨的实验研究, 昆明医科大学学报. 2008, 29(01): -.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  9
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-05

目录

    /

    返回文章
    返回