留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

miR-23通过调控PI3K/AKT/mTOR通路改善高血压性心力衰竭大鼠心肌血管生成的机制

张海行 张敬云 许丹丹 曹路 李晶晶

张海行, 张敬云, 许丹丹, 曹路, 李晶晶. miR-23通过调控PI3K/AKT/mTOR通路改善高血压性心力衰竭大鼠心肌血管生成的机制[J]. 昆明医科大学学报.
引用本文: 张海行, 张敬云, 许丹丹, 曹路, 李晶晶. miR-23通过调控PI3K/AKT/mTOR通路改善高血压性心力衰竭大鼠心肌血管生成的机制[J]. 昆明医科大学学报.
Haixing ZHANG, Jingyun ZHANG, Dandan XU, Lu CAO, Jingjing LI. The Mechanism of miR-23 Regulating PI3K/AKT/mTOR Pathway to Improve Myocardial Angiogenesis in Hypertensive Heart Failure Rats[J]. Journal of Kunming Medical University.
Citation: Haixing ZHANG, Jingyun ZHANG, Dandan XU, Lu CAO, Jingjing LI. The Mechanism of miR-23 Regulating PI3K/AKT/mTOR Pathway to Improve Myocardial Angiogenesis in Hypertensive Heart Failure Rats[J]. Journal of Kunming Medical University.

miR-23通过调控PI3K/AKT/mTOR通路改善高血压性心力衰竭大鼠心肌血管生成的机制

基金项目: 河北省医学科学研究课题计划项目(20242389)
详细信息
    作者简介:

    张海行(1992~),男,河北定州人,医学学士,主治医师,主要从事心血管内科研究工作

  • 中图分类号: R542.2

The Mechanism of miR-23 Regulating PI3K/AKT/mTOR Pathway to Improve Myocardial Angiogenesis in Hypertensive Heart Failure Rats

  • 摘要:   目的  探讨微小RNA-23(microRNA-23,miR-23)通过调控磷脂酰肌醇-3-激酶/蛋白激酶B/哺乳动物雷帕霉素靶蛋白(phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin,PI3K/AKT/mTOR)信号通路对高血压性心力衰竭(heart failure,HF)大鼠心肌重构、纤维化及血管生成的影响机制。  方法  将40只大鼠随机分为对照组、模型组、阴性对照组(antagomir-NC组)和miR-23抑制组(antagomir-23组),每组10只。采用高盐饮食诱导HF模型,并通过尾静脉注射antagomir-23进行干预。检测各组大鼠的心功能指标、心肌组织纤维化程度、细胞凋亡水平及血小板内皮细胞黏附分子-1(cluster of differentiation 31,CD31)、血管内皮生长因子(Vascular Endothelial Growth Factor,VEGF)和碱性成纤维生长因子(basic fibroblast growth factor,bFGF)等血管生成相关蛋白的表达,同时评估PI3K/AKT/mTOR信号通路活性;并通过双荧光素酶报告实验验证miR-23对PI3K的靶向调控。  结果  抑制miR-23可显著改善高血压性HF大鼠心功能,减少心肌纤维化与细胞凋亡,增强CD31、VEGF及bFGF的表达,并激活PI3K/AKT/mTOR信号通路(均P < 0.05)。双荧光素酶实验证实miR-23可负向调控PI3K的表达。  结论  抑制miR-23能够通过激活PI3K/AKT/mTOR信号通路,促进血管生成,减轻心肌损伤,从而延缓高血压性心力衰竭的进展。
  • 图  1  HE染色检测miR-23抑制对高血压HF大鼠心肌损伤的影响(×200)

    Figure  1.  HE staining detecting the effect of miR-23 inhibition on myocardial injury in hypertensive HF rats (×200)

    图  2  Masson染色检测miR-23抑制对高血压HF大鼠纤维化的影响(×20)

    Figure  2.  Masson staining detecting the effect of miR-23 inhibition on fibrosis in hypertensive HF rats (×20)

    图  3  TUNEL染色检测miR-23抑制对高血压HF大鼠心肌细胞凋亡的影响(×200)

    Figure  3.  TUNEL staining detecting the effect of miR-23 inhibition on cardiomyocyte apoptosis in hypertensive HF rats (×200)

    图  4  免疫荧光染色检测miR-23抑制对高血压HF大鼠心肌CD31表达的影响(×200)

    Figure  4.  Immunofluorescence staining to detect the effect of miR-23 inhibition on CD31 expression in myocardium of hypertensive HF rats (×200)

    图  5  Western blot检测miR-23抑制对高血压HF大鼠心肌组织中VEGF、VEGF-R2、bFGF及PI3K/AKT/mTOR信号通路蛋白水平的影响

    A:VEGF、VEGF-R2、bFGF及PI3K/AKT/mTOR信号通路蛋白印迹图;B:VEGF、VEGF-R2、bFGF及PI3K/AKT/mTOR信号通路蛋白表达统计图;1:对照组;2:模型组;3:antagomir-NC组;4:antagomir-23组。注:与对照组相比,aP < 0.05;与antagomir-NC组相比,bP < 0.05。

    Figure  5.  Western blot detection of the effects of miR-23 inhibition on protein levels of VEGF,VEGF-R2,bFGF and PI3K/AKT/mTOR signaling pathway in myocardial tissue of hypertensive HF rats

    表  1  引物序列

    Table  1.   Primer sequences

    基因 引物序列(5'-3'
    miR-23 F:AAACCGUT AGGGGTTC
    R:TTTGGCAATCCCCAAG
    U6 F:AAGUGGCA ACGAACCG
    R:TTCACCGUTGCTTGGC
    PI3K F:GGAATCCAGGGAAGGAAGG
    R:CAGTTTGGGTGGACGGAAGA
    下载: 导出CSV

    表  2  各组大鼠收缩压比较(n = 6,$ \bar x \pm s $)

    Table  2.   Comparison of systolic blood pressure among groups (n = 6,$ \bar x \pm s $)

    组别 收缩压(mmHg)
    对照组 134.44 ± 11.23
    模型组 180.26 ± 33.09Δ
    antagomir-NC组 168.04 ± 29.89Δ
    antagomir-23组 132.33 ± 18.04#
    F 5.701
    P 0.006*
      *P < 0.05;与对照组相比,ΔP < 0.05;与antagomir-NC组相比,#P < 0.05。
    下载: 导出CSV

    表  3  各组大鼠心功能指标比较(n = 6,$ \bar x \pm s $)

    Table  3.   Comparison of cardiac function indicators among groups(n = 6,$ \bar x \pm s $)

    组别 LVESP(mmHg) LVEDP(mmHg) +dp/dtmax(×103 mmHg/s) -dp/dtmax(×103 mmHg/s)
    对照组 123.48 ± 18.99 13.65 ± 1.40 3.57 ± 0.27 3.08 ± 0.22
    模型组 93.06 ± 19.21Δ 18.97 ± 4.92Δ 2.74 ± 0.74Δ 2.42 ± 0.55Δ
    antagomir-NC组 94.20 ± 30.64Δ 18.51 ± 2.39Δ 2.73 ± 0.75Δ 2.44 ± 0.52Δ
    antagomir-23组 120.10 ± 15.87# 13.47 ± 2.64# 3.42 ± 0.49# 3.16 ± 0.31#
    F 3.330 5.545 3.351 5.441
    P 0.040* 0.006** 0.040* 0.007**
      *P < 0.05,**P < 0.01;与对照组相比,ΔP < 0.05;与antagomir-NC组相比,#P < 0.05。
    下载: 导出CSV

    表  4  各组大鼠CVF比较(n = 6,$ \bar x \pm s $)

    Table  4.   Comparison of CVF among groups (n = 6,$ \bar x \pm s $)

    组别 CVF(%)
    对照组 1.79 ± 0.25
    模型组 2.30 ± 0.33Δ
    antagomir-NC组 2.30 ± 0.65Δ
    antagomir-23组 1.76 ± 0.24#
    F 3.413
    P 0.037*
      *P < 0.05;与对照组相比,ΔP < 0.05;与antagomir-NC组相比,#P < 0.05。
    下载: 导出CSV

    表  5  各组大鼠心肌细胞凋亡水平比较(n = 6,$ \bar x \pm s $)

    Table  5.   Comparison of cardiomyocyte apoptosis levels among groups(n = 6,$ \bar x \pm s $)

    组别 凋亡指数(%)
    对照组 2.28 ± 0.27
    模型组 24.20 ± 4.31ΔΔΔ
    antagomir-NC组 23.78 ± 4.32ΔΔΔ
    antagomir-23组 16.07 ± 4.35#
    F 44.839
    P <0.001***
      ***P < 0.001;与对照组相比,ΔΔΔP < 0.001;与antagomir-NC组相比,#P < 0.05。
    下载: 导出CSV

    表  6  各组大鼠心肌CD31表达水平比较(n = 6,$ \bar x \pm s $)

    Table  6.   Comparison of myocardial CD31 expression levels among groups(n = 6,$ \bar x \pm s $)

    组别 CD31表达率(%)
    对照组 3.66 ± 0.45
    模型组 2.86 ± 0.39ΔΔ
    antagomir-NC组 2.91 ± 0.57ΔΔ
    antagomir-23组 3.52 ± 0.70#
    F 3.498
    P 0.035*
      *P < 0.05;与对照组相比,ΔΔP < 0.01;与antagomir-NC组相比,#P < 0.05。
    下载: 导出CSV

    表  7  各组大鼠心肌组织miR-23表达量比较(n = 6,$ \bar x \pm s $)

    Table  7.   Comparison of myocardial miR-23 expression levels among groups (n = 6,$ \bar x \pm s $)

    组别 miR-23
    对照组 1.00 ± 0.10
    模型组 1.27 ± 0.28Δ
    antagomir-NC组 1.37 ± 0.35Δ
    antagomir-23组 1.03 ± 0.14#
    F 3.267
    P 0.043*
      *P < 0.05;与对照组相比,ΔP < 0.05;与antagomir-NC组相比,#P < 0.05。
    下载: 导出CSV

    表  8  荧光素酶活性比较(n = 6,$ \bar x \pm s $)

    Table  8.   Comparison of luciferase activity(n = 6,$ \bar x \pm s $)

    组别 荧光素酶活性
    miR-NC+PI3K-WT组 1.02 ± 0.08
    miR-23 mimic+PI3K-WT组 0.76 ± 0.18Δ
    miR-NC+PI3K-MUT组 0.99 ± 0.12
    miR-23 mimic+PI3K-MUT组 0.99 ± 0.20
    F 3.701
    P 0.029*
      *P < 0.05;与miR-NC+PI3K-WT组相比,ΔP < 0.05。
    下载: 导出CSV
  • [1] Groenewegen A, Rutten F H, Mosterd A, et al. Epidemiology of heart failure[J]. European J Heart Fail, 2020, 22(8): 1342-1356. doi: 10.1002/ejhf.1858
    [2] Pezel T, Viallon M, Croisille P, et al. Imaging interstitial fibrosis, left ventricular remodeling, and function in stage a and B heart failure[J]. JACC Cardiovasc Imaging, 2021, 14(5): 1038-1052. doi: 10.1016/j.jcmg.2020.05.036
    [3] Yan F, Hu X, He L, et al. ADAM33 silencing inhibits vascular smooth muscle cell migration and regulates cytokine secretion in airway vascular remodeling via the PI3K/AKT/mTOR pathway[J]. Can Respir J, 2022, 2022: 8437348.
    [4] Siasos G, Bletsa E, Stampouloglou P K, et al. microRNAs in cardiovascular disease[J]. Hellenic J Cardiol, 2020, 61(3): 165-173. doi: 10.1016/j.hjc.2020.03.003
    [5] Lombari P, Mallardo M, Petrazzuolo O, et al. miRNA-23a modulates sodium-hydrogen exchanger 1 expression: Studies in medullary thick ascending limb of salt-induced hypertensive rats[J]. Nephrol Dial Transplant, 2023, 38(3): 586-598. doi: 10.1093/ndt/gfac232
    [6] Lu M, Xu Y, Wang M, et al. microRNA-23 inhibition protects the ischemia/reperfusion injury via inducing the differentiation of bone marrow mesenchymal stem cells into cardiomyocytes[J]. Int J Clin Exp Pathol, 2019, 12(3): 1060-1069.
    [7] Wang S, Olson E N. AngiomiRs—key regulators of angiogenesis[J]. Curr Opin Genet Dev, 2009, 19(3): 205-211. doi: 10.1016/j.gde.2009.04.002
    [8] Shu X, Zhan P P, Sun L X, et al. BCAT1 activates PI3K/AKT/mTOR pathway and contributes to the angiogenesis and tumorigenicity of gastric cancer[J]. Front Cell Dev Biol, 2021, 9: 659260. doi: 10.3389/fcell.2021.659260
    [9] Ahmad A, Nawaz M I. Molecular mechanism of VEGF and its role in pathological angiogenesis[J]. J Cell Biochem, 2022, 123(12): 1938-1965. doi: 10.1002/jcb.30344
    [10] Sainsily X, Coquerel D, Giguère H, et al. Elabela protects spontaneously hypertensive rats from hypertension and cardiorenal dysfunctions exacerbated by dietary high-salt intake[J]. Front Pharmacol, 2021, 12: 709467. doi: 10.3389/fphar.2021.709467
    [11] Wang Y, Yang L Z, Yang D G, et al. miR-21 antagomir improves insulin resistance and lipid metabolism disorder in streptozotocin-induced type 2 diabetes mellitus rats[J]. Ann Palliat Med, 2020, 9(2): 394-404. doi: 10.21037/apm.2020.02.28
    [12] Fuchs F D, Whelton P K. High blood pressure and cardiovascular disease[J]. Hypertension, 2020, 75(2): 285-292. doi: 10.1161/HYPERTENSIONAHA.119.14240
    [13] Stacey R B, Hundley W G. Integrating measures of myocardial fibrosis in the transition from hypertensive heart disease to heart failure[J]. Curr Hypertens Rep, 2021, 23(4): 22. doi: 10.1007/s11906-021-01135-8
    [14] Wang N, Tan H Y, Feng Y G, et al. microRNA-23a in human cancer: Its roles, mechanisms and therapeutic relevance[J]. Cancers (Basel), 2018, 11(1): E7. doi: 10.3390/cancers11010007
    [15] Jiang K, Teng G D, Chen Y Q. microRNA-23 suppresses osteogenic differentiation of human bone marrow mesenchymal stem cells by targeting the MEF2C-mediated MAPK signaling pathway[J]. J Gene Med, 2020, 22(10): e3216. doi: 10.1002/jgm.3216
    [16] Liu L, Cheng Z, Yang J. miR-23 regulates cell proliferation and apoptosis of vascular smooth muscle cells in coronary heart disease[J]. Pathol Res Pract, 2018, 214(11): 1873-1878. doi: 10.1016/j.prp.2018.09.004
    [17] Friso S, Carvajal C, Pizzolo F, et al. Epigenetics and arterial hypertension: evidences and perspectives [M]. In: Translating Epigenetics to the Clinic. Elsevier, 2017: 159–184.
    [18] Yang Z, Chen H, Si H, et al. Serum miR-23a, a potential biomarker for diagnosis of pre-diabetes and type 2 diabetes[J]. Acta Diabetol, 2014, 51(5): 823-831. doi: 10.1007/s00592-014-0617-8
    [19] Liang B, Leenen F H. Prevention of salt induced hypertension and fibrosis by angiotensin converting enzyme inhibitors in Dahl S rats[J]. Br J Pharmacol, 2007, 152(6): 903-914. doi: 10.1038/sj.bjp.0707472
    [20] Rincón L M, Rodríguez-Serrano M, Conde E, et al. Serum microRNAs are key predictors of long-term heart failure and cardiovascular death after myocardial infarction[J]. ESC Heart Fail, 2022, 9(5): 3367-3379. doi: 10.1002/ehf2.13919
    [21] Di Y, Zhang D, Hu T, et al. miR-23 regulate the pathogenesis of patients with coronary artery disease[J]. Int J Clin Exp Med, 2015, 8(7): 11759-11769.
    [22] Yu R B, Li K, Wang G, et al. miR-23 enhances cardiac fibroblast proliferation and suppresses fibroblast apoptosis via targeting TGF-β1 in atrial fibrillation[J]. Eur Rev Med Pharmacol Sci, 2019, 23(10): 4419-4424.
    [23] Wang L, Li Q, Diao J, et al. miR-23a is involved in myocardial ischemia/reperfusion injury by directly targeting CX43 and regulating mitophagy[J]. Inflammation, 2021, 44(4): 1581-1591. doi: 10.1007/s10753-021-01443-w
    [24] Dhumale P, Nielsen J V, Hansen A C S, et al. CD31 defines a subpopulation of human adipose-derived regenerative cells with potent angiogenic effects[J]. Sci Rep, 2023, 13: 14401. doi: 10.1038/s41598-023-41535-1
    [25] Martins B R, Pinto T S, da Costa Fernandes C J, et al. PI3K/AKT signaling drives titanium-induced angiogenic stimulus[J]. J Mater Sci Mater Med, 2021, 32(1): 18. doi: 10.1007/s10856-020-06473-8
  • [1] 刘珍珍, 张迎, 高鑫宇.  血浆ADAMTS13水平与心力衰竭合并2型糖尿病患者临床预后的关系, 昆明医科大学学报. 2025, 46(7): 110-117. doi: 10.12259/j.issn.2095-610X.S20250713
    [2] 徐云容, 何飞.  材料结构对骨再生中血管生成的影响, 昆明医科大学学报. 2025, 46(9): 159-165. doi: 10.12259/j.issn.2095-610X.S20250919
    [3] 李双秀, 郑琦, 尹高生, 杨萍, 凌露.  自噬通量受损介导细胞凋亡在压力负荷诱导心力衰竭中的作用, 昆明医科大学学报. 2025, 46(9): 54-62. doi: 10.12259/j.issn.2095-610X.S20250906
    [4] 彭达, 张爱军.  正常高值血压者尿NGAL与血流介导的血管舒张功能的相关性, 昆明医科大学学报. 2024, 45(1): 127-132. doi: 10.12259/j.issn.2095-610X.S20240121
    [5] 贾政, 邢正江, 刘茜, 杜义斌, 李冰, 解英, 赵义.  建立大鼠心肌缺血与体外CMECs缺氧模型-观察对冠脉微循环的影响, 昆明医科大学学报. 2024, 45(11): 38-45. doi: 10.12259/j.issn.2095-610X.S20241106
    [6] 黄友, 李国晖, 刘杜丽, 余孜孜, 左梅, 李芹, 吕波, 蔡乐.  云南墨江县农村汉族和哈尼族老年人高血压的流行现状及与心血管病危险因素聚集性的关系, 昆明医科大学学报. 2024, 45(9): 42-48. doi: 10.12259/j.issn.2095-610X.S20240907
    [7] 李志霄, 郑霞, 李春玲, 刘庆圣, 张衡.  miR-205-5p靶向ERBB3调控PI3K/AKT/mTOR通路抑制血管生成在痔疮中的分子机制, 昆明医科大学学报. 2024, 45(6): 22-35. doi: 10.12259/j.issn.2095-610X.S20240604
    [8] 杨梅, 王平, 杨晖, 何功浩.  心力衰竭的潜在治疗靶点及相关药物研发进展, 昆明医科大学学报. 2023, 44(7): 156-161. doi: 10.12259/j.issn.2095-610X.S20230719
    [9] 代华磊, 胡成成, 张桂敏, 陶四明, 陈建昆.  基于网络药理学和分子对接筛选黄芪治疗高血压心室重构的生物标记物, 昆明医科大学学报. 2023, 44(8): 27-36. doi: 10.12259/j.issn.2095-610X.S20230819
    [10] 李柳, 王亚茹, 张娣, 陈勤聪, 王明, 王硕.  高血压个体化用药基因检测在Ⅲ级高血压患者中的应用, 昆明医科大学学报. 2022, 43(4): 112-117. doi: 10.12259/j.issn.2095-610X.S20220430
    [11] 张海萍, 杨淑娟, 杨丽霞, 阮兆娟, 郭瑞威.  高同型半胱氨酸对急性心肌梗死合并高血压患者行急诊PCI术后6个月心功能及死亡的影响, 昆明医科大学学报. 2021, 42(3): 73-78. doi: 10.12259/j.issn.2095-610X.S20210319
    [12] 章体玲, 张伟华, 罗庆祎, 夏洪颖, 鲁一兵.  沙库巴曲缬沙坦治疗扩张型心肌病心力衰竭的疗效, 昆明医科大学学报. 2020, 41(03): 91-95.
    [13] 苏建培, 田伟盟, 顾俊, 何弥玉.  C反应蛋白/白蛋白比值与老年心力衰竭患者长期预后的关系, 昆明医科大学学报. 2020, 41(12): 128-132. doi: 10.12259/j.issn.2095-610X.S20201236
    [14] 刘栋.  血清生存素水平及结缔组织生长因子对慢性乙型肝炎纤维化进展的临床意义, 昆明医科大学学报. 2014, 35(10): -1.
    [15] 杨静.  乙肝患者TGF-β及bFGF水平与肝纤维化程度相关性分析, 昆明医科大学学报. 2014, 35(07): -.
    [16] 杜映荣.  血管紧张素原(AGT)基因M235T多态性与中老年高血压并抑郁症的相关性研究, 昆明医科大学学报. 2014, 35(02): -.
    [17] 杨峥.  氧化应激与血压和高血压发病关系的研究, 昆明医科大学学报. 2013, 34(10): -.
    [18] 戴海龙.  超声新技术指导下心脏再同步化治疗心功能及相关因子水平观察, 昆明医科大学学报. 2013, 34(07): -.
    [19] 常颂桔.  尿酸干预对老年高血压合并糖尿病患者心功能的影响, 昆明医科大学学报. 2013, 34(05): -.
    [20] 杨丽华.  抗整合素αⅤβ3单抗抑制上皮性卵巢癌血管及肿瘤生成的实验研究, 昆明医科大学学报. 2012, 33(06): -.
  • 加载中
图(5) / 表(8)
计量
  • 文章访问数:  43
  • HTML全文浏览量:  33
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-10
  • 网络出版日期:  2025-11-06

目录

    /

    返回文章
    返回