留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HPV16 E6、E7多表位DNA疫苗的构建及免疫效果评估

崔湘杰 陶玉芬 朱兰芳 姚宇峰 史荔

崔湘杰, 陶玉芬, 朱兰芳, 姚宇峰, 史荔. HPV16 E6、E7多表位DNA疫苗的构建及免疫效果评估[J]. 昆明医科大学学报.
引用本文: 崔湘杰, 陶玉芬, 朱兰芳, 姚宇峰, 史荔. HPV16 E6、E7多表位DNA疫苗的构建及免疫效果评估[J]. 昆明医科大学学报.
Xiangjie CUI, Yufen TAO, Lanfang ZHU, Yufeng YAO, Li SHI. Evaluations of Immunogenicity and Efficacy of A Novel HPV16 E6 and E7 Multi-epitope DNA Vaccine[J]. Journal of Kunming Medical University.
Citation: Xiangjie CUI, Yufen TAO, Lanfang ZHU, Yufeng YAO, Li SHI. Evaluations of Immunogenicity and Efficacy of A Novel HPV16 E6 and E7 Multi-epitope DNA Vaccine[J]. Journal of Kunming Medical University.

HPV16 E6、E7多表位DNA疫苗的构建及免疫效果评估

基金项目: 中国医学科学院医学与健康科技创新工程基金资助项目(2021-I2M-1-004);云南省重大科技专项基金资助项目(202002AA100009)
详细信息
    作者简介:

    崔湘杰(1998 ~ ),女,辽宁铁岭人,在读硕士研究生,主要从事感染性疾病及肿瘤的免疫遗传学研究工作

    通讯作者:

    史荔,E-mail:shili.imb@gmail.com

  • 中图分类号: R737.33

Evaluations of Immunogenicity and Efficacy of A Novel HPV16 E6 and E7 Multi-epitope DNA Vaccine

  • 摘要:   目的  构建和评价HPV16 E6、E7多表位DNA疫苗诱导的特异性CTL细胞应答及其对肿瘤生长的干预作用,从而揭示其作为候选HPV治疗性疫苗的潜能。  方法  首先通过IEDB网站中的MHC I Processing Predictions和MHC I Binding Predictions方法,分别预测人类HLA-A*02:01、HLA-A*11:01、HLA-A*24:02和C57BL/6小鼠H-2b的限制性CTL表位,然后根据评分以及ELISPOT实验筛选出2者共同呈递的CTL表位,并将其构建成多表位DNA疫苗(pVAX1-10P)。从预防性和治疗性2个方面研究pVAX1-10P对小鼠移植TC-1异位癌的免疫干预作用,流式细胞术检测特异性CTL应答。  结果  获得10条可被人与鼠MHC分子共呈递的CTL表位,ELISPOT结果表明这10条CTL表位均能诱导小鼠淋巴细胞产生特异性免疫应答;由此构建的多表位DNA疫苗pVAX1-10P无论在预防性实验还是治疗性实验中,均能诱导特异性的细胞免疫并抑制肿瘤的生长。  结论  构建的HPV16 E6、E7多表位DNA疫苗pVAX1-10P能够诱导特异性CTL应答,显著抑制肿瘤生长,有望作为候选HPV治疗性DNA疫苗。
  • 图  1  小鼠免疫程序

    A:疫苗的预防性抗肿瘤评价中的小鼠免疫程序;B:疫苗的治疗性抗肿瘤评价中的小鼠免疫程序。

    Figure  1.  Immunisation program in mice

    图  2  ELISPOT检测结果

    A:实验组及对照组代表性酶联免疫斑点法图;B:ELISPOT检测IFN-γ斑点数统计图,条形图以$ \bar x \pm s $表示。

    Figure  2.  ELISPOT results

    图  3  质粒构建图

    Figure  3.  Plasmid construction diagram

    图  4  多表位DNA疫苗诱导的预防性抗肿瘤免疫

    A:肿瘤解剖图;B:流式细胞术检测的CD8+T IFN-γ占比;与对照组比较,*P < 0.05。

    Figure  4.  Prophylactic anti-tumor immunity induced by multi-epitope vaccine

    图  5  多表位DNA疫苗诱导的治疗性抗肿瘤免疫

    A:肿瘤解剖图;B:流式细胞术检测的CD8+T IFN-γ占比;与对照组比较,*P < 0.05,nsP ˃ 0.05。

    Figure  5.  Therapeutic anti-tumor immunity induced by multi-epitope vaccine

    表  1  预测得到的人鼠共呈递的CTL表位

    Table  1.   Predicted human and mouse co-presented CTL epitopes

    蛋白 肽名称 起始位点 结束位点 序列 总分(鼠) 总分(人) 等级排名(鼠) 等级排名(人)
    E6 E6p1 38 45 VYCKQQLL −0.81 −1.39 1.4 0.45
    E6p2 49 57 VYDFAFRDL −1.39 −1.23 1.3 0.28
    E6p3 75 83 KFYSKISEY −0.72 −0.74或−0.75 1.5 1.6
    E6p4 124 132 RHLDKKQRF −1.3 −1.06 1.4 0.46
    E6p5 81 90 SEYRHYCYSL −0.29 1.7
    82 90 EYRHYCYSL −0.68 0.57
    E6p6 86 95 YCYSLYGTTL −0.52 −0.37 1.6 0.41
    E7 E7p1 49 57 RAHYNIVTF 0.83或−0.59 −0.3 0.01或0.6 0.54
    E7p2 7 15 TLHEYMLDL −1.08 −0.28 1.3 0.21
    E7p3 50 57 AHYNIVTF −0.04或−1.26 −1.12 0.23或1.2 1.2
    E7p4 77 87 RTLEDLLMGTL −1.37 −1.36 1.3 1.2
    下载: 导出CSV
  • [1] Alay I,Kaya C,Karaca I,et al. The effect of being diagnosed with human papillomavirus infection on women's sexual lives[J]. J Med Virol,2020,92(8):1290-1297. doi: 10.1002/jmv.25623
    [2] Yu L L, Majerciak V, Zheng ZM. HPV16 and HPV18 Genome Structure, Expression, and Post-Transcriptional Regulation[J]. Int J Mol Sci,2022,23(9):4943.
    [3] Williamson A L. Recent developments in human papillomavirus (HPV) vaccinology[J]. Viruses,2023,15(7):1440. doi: 10.3390/v15071440
    [4] Chen W,Sun H,Molijn A,et al. The variable characteristics of human papillomavirus in squamous cell carcinoma and adenocarcinoma of cervix in China[J]. J Low Genit Tract Dis,2018,22(4):355-361. doi: 10.1097/LGT.0000000000000408
    [5] Lei J,Ploner A,Elfstrom K M,et al. HPV vaccination and the risk of invasive cervical cancer[J]. N Engl J Med,2020,383(14):1340-1348. doi: 10.1056/NEJMoa1917338
    [6] Messa L, Loregian A. HPV-induced cancers: preclinical therapeutic advancements[J]. Expert Opin Investig Drugs,2022,31(1):79-93.
    [7] Yan F, Cowell L, Tomkies A, et al. Therapeutic Vaccination for HPV-Mediated Cancers[J]. Current otorhinolaryngology reports,2023,11(1):44-61.
    [8] Ortiz-Pedraza Y,Munoz-Bello J O,Ramos-Chavez L A,et al. HPV16 E6 and E7 oncoproteins stimulate the glutamine pathway maintaining cell proliferation in a SNAT1-dependent fashion[J]. Viruses,2023,15(2):324. doi: 10.3390/v15020324
    [9] Welters M J,Kenter G G,Piersma S J,et al. Induction of tumor-specific CD4+ and CD8+ T-cell immunity in cervical cancer patients by a human papillomavirus type 16 E6 and E7 long peptides vaccine[J]. Clin Cancer Res,2008,14(1):178-187. doi: 10.1158/1078-0432.CCR-07-1880
    [10] Yan F,Cowell L G,Tomkies A,et al. Therapeutic vaccination for HPV-mediated cancers[J]. Curr Otorhinolaryngol Rep,2023,11(1):44-61. doi: 10.1007/s40136-023-00443-8
    [11] Song X,Xu L,Yan R,et al. Construction of eimeria tenella multi-epitope DNA vaccines and their protective efficacies against experimental infection[J]. Vet Immunol Immunopathol,2015,166(3-4):79-87. doi: 10.1016/j.vetimm.2015.05.005
    [12] Radwan J, Babik W, Kaufman J, et al. Advances in the Evolutionary Understanding of MHC Polymorphism[J]. Trends Genet,2020,36(4):298-311.
    [13] Chandran SS, Klebanoff CA. T cell receptor-based cancer immunotherapy: Emerging efficacy and pathways of resistance[J]. Immunol Rev,2019,290(1):127-147.
    [14] Kelley J, Walter L, Trowsdale J. Comparative genomics of major histocompatibility complexes[J]. Immunogenetics,2005,56(10):683-695.
    [15] Gul A,Doskaya M,Can H,et al. Immunogenicity of a xenogeneic multi-epitope HER2(+) breast cancer DNA vaccine targeting the dendritic cell restricted antigen-uptake receptor DEC205[J]. Vaccine,2022,40(16):2409-2419. doi: 10.1016/j.vaccine.2022.03.014
    [16] Rashidi S, Faraji SN, Mamaghani AJ, et al. Bioinformatics analysis for the purpose of designing a novel multi-epitope DNA vaccine against Leishmania major[J]. Sci Rep,2022,12(1):18119.
    [17] Robinson J,Barker D J,Georgiou X,et al. IPD-IMGT/HLA database[J]. Nucleic Acids Res,2020,48(D1):D948-D955.
    [18] Gonzalez-Galarza F F,Mccabe A,Santos E,et al. Allele frequency net database (AFND) 2020 update: Gold-standard data classification,open access genotype data and new query tools[J]. Nucleic Acids Res,2020,48(D1):D783-D788.
    [19] He Y,Li J,Mao W,et al. HLA common and well-documented alleles in China[J]. HLA,2018,92(4):199-205. doi: 10.1111/tan.13358
    [20] Goradel N H,Negahdari B,Mohajel N,et al. Heterologous administration of HPV16 E7 epitope-loaded nanocomplexes inhibits tumor growth in mouse model [J]. Int Immunopharmacol,2021,101(Pt B): 108298.
    [21] Zhang Y,Ren F,Ni B,et al. Tumor targeting nanoparticle E7(49-57)-HSP110-RGD elicits potent anti-tumor immune response in a CD8-dependent manner in cervical cancer-bearing mouse model[J]. Hum Vaccin Immunother,2021,17(10):3529-3538. doi: 10.1080/21645515.2021.1933875
    [22] Ghanaat M,Kaboosi H,Negahdari B,et al. Heterologous prime-boost vaccination using adenovirus and albumin nanoparticles as carriers for human papillomavirus 16 E7 epitope[J]. Curr Pharm Biotechnol,2023,24(9):1195-1203. doi: 10.2174/1389201023666220922122531
    [23] Tseng S H,Cheng M A,Farmer E,et al. Albumin and interferon-beta fusion protein serves as an effective vaccine adjuvant to enhance antigen-specific CD8+ T cell-mediated antitumor immunity[J]. J Immunother Cancer,2022,10(4):e004342. doi: 10.1136/jitc-2021-004342
    [24] Messa L,Loregian A. HPV-induced cancers: Preclinical therapeutic advancements[J]. Expert Opin Investig Drugs,2022,31(1):79-93. doi: 10.1080/13543784.2021.2010703
    [25] Namvar A,Panahi H A,Agi E,et al. Development of HPV(16,18,31,45) E5 and E7 peptides-based vaccines predicted by immunoinformatics tools[J]. Biotechnol Lett,2020,42(3):403-418. doi: 10.1007/s10529-020-02792-6
    [26] Slingluff C L,Jr. The present and future of peptide vaccines for cancer: Single or multiple,long or short,alone or in combination?[J]. Cancer J,2011,17(5):343-350. doi: 10.1097/PPO.0b013e318233e5b2
    [27] Liu W,Tang H,Li L,et al. Peptide-based therapeutic cancer vaccine: Current trends in clinical application[J]. Cell Prolif,2021,54(5):e13025. doi: 10.1111/cpr.13025
    [28] Pardoll D M. Spinning molecular immunology into successful immunotherapy[J]. Nat Rev Immunol,2002,2(4):227-238. doi: 10.1038/nri774
    [29] Nezafat N,Sadraeian M,Rahbar M R,et al. Production of a novel multi-epitope peptide vaccine for cancer immunotherapy in TC-1 tumor-bearing mice[J]. Biologicals,2015,43(1):11-17. doi: 10.1016/j.biologicals.2014.11.001
    [30] Wang Q,Li Q F,Zang J,et al. A novel multi-epitope vaccine of HPV16 E5E6E7 oncoprotein delivered by HBc VLPs induced efficient prophylactic and therapeutic antitumor immunity in tumor mice model[J]. Vaccine,2022,40(52):7693-7702. doi: 10.1016/j.vaccine.2022.10.069
    [31] Gul A, Doskaya M, Can H, et al. Immunogenicity of a xenogeneic multi-epitope HER2(+) breast cancer DNA vaccine targeting the dendritic cell restricted antigen-uptake receptor DEC205[J]. Vaccine,2022,40(16):2409-2419.
    [32] De Oliveira L M,Morale M G,Chaves A A,et al. Design,immune responses and anti-tumor potential of an HPV16 E6E7 multi-epitope vaccine[J]. PLoS One,2015,10(9):e0138686. doi: 10.1371/journal.pone.0138686
  • [1] 孟丽燕, 王超群, 陈星慧, 何军晶, 牛雅茹, 马丽莎.  早期宫颈癌术后HPV持续感染的危险因素分析, 昆明医科大学学报. 2024, 45(4): 152-156. doi: 10.12259/j.issn.2095-610X.S20240422
    [2] 郭妮, 张承, 洪超, 刘伟鹏, 姚宇峰, 严志凌.  KRAS基因3′UTR多态性与云南汉族人群宫颈癌及宫颈上皮内瘤变的相关性, 昆明医科大学学报. 2024, 45(2): 14-22. doi: 10.12259/j.issn.2095-610X.S20240203
    [3] 肖金宝, 赵骏达, 马俊旗.  下调HPV16 E6/E7表达宫颈癌细胞Siha上清液代谢组学, 昆明医科大学学报. 2024, 45(1): 22-27. doi: 10.12259/j.issn.2095-610X.S20240104
    [4] 谢芹, 赵春阳, 张葆溯, 赵洪波.  硫利达嗪抗宫颈癌的潜在作用机制, 昆明医科大学学报. 2022, 43(3): 13-20. doi: 10.12259/j.issn.2095-610X.S20220317
    [5] 陈红兰, 吴怡, 胡滔, 王玉明.  外周血G6PD活性检测对于感染高危型人乳头瘤病毒宫颈癌患者的诊断预后价值, 昆明医科大学学报. 2022, 43(2): 89-95. doi: 10.12259/j.issn.2095-610X.S20220203
    [6] 刘洋, 廖婧, 卢又汇, 孙春意, 孟昱时.  miR-21负向调控宫颈癌HeLa细胞株中hTERT的表达, 昆明医科大学学报. 2021, 42(3): 23-28. doi: 10.12259/j.issn.2095-610X.S20210307
    [7] 张娟, 张红芸.  宫颈管搔刮术在宫颈癌筛查中的价值, 昆明医科大学学报. 2021, 42(8): 123-127. doi: 10.12259/j.issn.2095-610X.S20210822
    [8] 谭丁及, 尹洪莉, 朱锐, 张曦, 余鑫, 飞勇, 李昕, 段铭, 何亮, 杨宏英.  宫颈上皮内瘤变和宫颈癌患者的阴道微生态特点, 昆明医科大学学报. 2021, 42(8): 118-122. doi: 10.12259/j.issn.2095-610X.S20210821
    [9] 卿清, 刘洋, 周红林.  宫颈癌筛查策略的研究进展, 昆明医科大学学报. 2020, 41(06): 162-166.
    [10] 周栩茹, 王熙, 田洁, 谢玲玲, 许宏宇, 李晓兰.  黏附斑激酶在宫颈癌组织中表达及意义, 昆明医科大学学报. 2019, 40(01): 87-91.
    [11] 胡滔, 刘光彩, 洪颖, 陈红兰, 常业飞, 姜水, 檀雅欣, 习杨彦彬, 陈波.  G6PD表达敲减对人宫颈癌细胞miRNAs表达谱的影响, 昆明医科大学学报. 2019, 40(03): 6-10.
    [12] 胡滔, 洪颖, 陈红兰, 常业飞, 姜水, 习杨彦彬, 檀雅欣, 李珊, 刘光彩, 吴晓虹.  miR-1对HR HPV 16~+/18~+宫颈癌细胞周期相关蛋白的调控, 昆明医科大学学报. 2018, 39(12): 11-15.
    [13] 何红芬.  宫颈锥切术治疗IaⅠ期宫颈癌患者术后病灶残余状况及其危险因素, 昆明医科大学学报. 2015, 36(11): -.
    [14] 杨正浩.  细胞DNA定量分析法和液基薄层细胞学检测技术在宫颈癌早期诊断中的应用对比, 昆明医科大学学报. 2015, 36(06): -1.
    [15] 魏洁.  Twist在中晚期宫颈癌组织中的表达及临床意义研究, 昆明医科大学学报. 2014, 35(01): -1.
    [16] 李铮.  云南地区人乳头瘤病毒16型感染及与其他亚型混合感染状况分析, 昆明医科大学学报. 2014, 35(01): -1.
    [17] 赵东岩.  2013年昆明市2 899例妇科宫颈糜烂患者人乳头瘤病毒检测分析, 昆明医科大学学报. 2014, 35(11): -1.
    [18] 严志凌.  宿主p53基因多态性与HPV16 感染、宫颈癌发生发展的相关性, 昆明医科大学学报. 2014, 35(05): -.
    [19] 刘慧瑾.  宫颈癌组织Vimentin的表达与淋巴转移宫旁浸润的关系研究, 昆明医科大学学报. 2013, 34(10): -.
    [20] 黄雅.  Brn-3a、PPAR-γ在宫颈癌及癌前病变中的表达, 昆明医科大学学报. 2008, 29(01): -.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  120
  • HTML全文浏览量:  140
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-16
  • 网络出版日期:  2024-04-30

目录

    /

    返回文章
    返回