留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

细胞焦亡在糖尿病肾脏病中的作用及机制研究进展

冉珍琴 刘泽慧 杨蓉 王子宙 陈栎昕 韩睿

冉珍琴, 刘泽慧, 杨蓉, 王子宙, 陈栎昕, 韩睿. 细胞焦亡在糖尿病肾脏病中的作用及机制研究进展[J]. 昆明医科大学学报.
引用本文: 冉珍琴, 刘泽慧, 杨蓉, 王子宙, 陈栎昕, 韩睿. 细胞焦亡在糖尿病肾脏病中的作用及机制研究进展[J]. 昆明医科大学学报.
Zhenqin RAN, Zehui LIU, Rong YANG, Zizhou WANG, Lixin CHEN, Rui HAN. Research Progress on the Role and Mechanism of Pyroptosis in Diabetic Kidney Disease[J]. Journal of Kunming Medical University.
Citation: Zhenqin RAN, Zehui LIU, Rong YANG, Zizhou WANG, Lixin CHEN, Rui HAN. Research Progress on the Role and Mechanism of Pyroptosis in Diabetic Kidney Disease[J]. Journal of Kunming Medical University.

细胞焦亡在糖尿病肾脏病中的作用及机制研究进展

基金项目: 云南省糖尿病及慢性并发症诊疗关键技术创新应用国际联合实验室(202503AP140036);云南省科技厅-昆明医科大学基础研究计划项目(202501AY070001-009);云南省“兴滇英才支持计划”(名医专项)(XDYC-MY-2022-0004);云南省卫生健康委员会医学领军人才(L-2019015);昆明医科大学教育教学研究课题重点项目(2024-JY-Z-13)。
详细信息
    作者简介:

    冉珍琴(1999~),女,土家族,贵州铜仁人,在读硕士研究生,主要从事内分泌与代谢医学研究工作

    通讯作者:

    韩睿,E-mail:13529365266@163.com

  • 中图分类号: R587.2

Research Progress on the Role and Mechanism of Pyroptosis in Diabetic Kidney Disease

  • 摘要: 糖尿病肾脏病(diabetic kidney disease,DKD)是糖尿病最常见的微血管并发症之一,属于无菌性炎症性疾病。细胞焦亡(pyroptosis)是一种由炎症小体和半胱天冬酶(caspase)家族介导的炎症性程序性细胞死亡方式,近年来被证实在DKD发生发展中发挥着关键作用。高血糖等刺激可通过激活NLRP3炎症小体及相关信号通路诱导肾脏固有细胞焦亡,进一步放大局部炎症反应、促进肾纤维化进程,最终导致肾功能进行性恶化。本文综述了细胞焦亡的分子机制及其在DKD中的研究进展,探讨以焦亡通路为靶点的潜在干预策略,为DKD的防治提供新的理论依据与治疗思路。
  • 图  1  不同细胞焦亡途径示意图

    Figure  1.  Diagram showing different pyroptotic pathways

    图  2  细胞焦亡驱动DKD肾纤维化机制图

    Figure  2.  Diagram of the mechanism of renal fibrosis driven by pyroptosis in DKD

  • [1] Joumaa J P, Raffoul A, Sarkis C, et al. Mechanisms, biomarkers, and treatment approaches for diabetic kidney disease: current insights and future perspectives[J]. J Clin Med, 2025, 14(3): 727.
    [2] He Y, Wang X, Li L, et al. Global, regional, and national prevalence of chronic type 2 diabetic kidney disease from 1990 to 2021: a trend and health inequality analyses based on the global burden of disease study 2021[J]. J Diabetes, 2025, 17(5): e70098. doi: 10.1111/1753-0407.70098
    [3] Zhang H, Wang K, Zhao H, et al. Diabetic kidney disease: from pathogenesis to multimodal therapy-current evidence and future directions[J]. Front Med, 2025, 12: 1631053.
    [4] Efiong E E, Maedler K, Effa E, et al. Decoding diabetic kidney disease: a comprehensive review of interconnected pathways, molecular mediators, and therapeutic insights[J]. Diabetol Metab Syndr, 2025, 17(1): 192.
    [5] Fang B, Huang W, Du S, et al. The inflammatory cell death in diabetic kidney disease: integrating multifactorial mechanisms into novel therapeutics[J]. Int J Mol Sci, 2025, 26(22): 11033. doi: 10.3390/ijms262211033
    [6] Chen Y, Chen R, Ji X, et al. NLRP3 inflammasome-mediated pyroptosis in diabetic nephropathy: pathogenic mechanisms and therapeutic Targets[J]. J Inflamm Res, 2025, 18: 8399-8418.
    [7] Zheng X, Wan J, Tan G. The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in diabetic retinopathy[J]. Front Immunol, 2023, 14: 1151185. doi: 10.3389/fimmu.2023.1151185
    [8] Vasudevan S O, Behl B, Rathinam V A. Pyroptosis-induced inflammation and tissue damage[J]. Semin Immunol, 2023, 69: 101781. doi: 10.1016/j.smim.2023.101781
    [9] Wright S S, Vasudevan S O, Rathinam V A. Mechanisms and consequences of noncanonical inflammasome-mediated pyroptosis[J]. J Mol Biol, 2022, 434(4): 167245. doi: 10.1016/j.jmb.2021.167245
    [10] Du T, Gao J, Li P, et al. Pyroptosis, metabolism, and tumor immune microenvironment[J]. Clin Transl Med, 2021, 11(8): e492.
    [11] Rao Z, Zhu Y, Yang P, et al. Pyroptosis in inflammatory diseases and cancer[J]. Theranostics, 2022, 12(9): 4310-4329.
    [12] Swanson K V, Deng M, Ting J P. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics[J]. Nat Rev Immunol, 2019, 19(8): 477-489. doi: 10.1038/s41577-019-0165-0
    [13] Fu J, Wu H. Structural mechanisms of NLRP3 inflammasome assembly and activation[J]. Annu Rev Immunol, 2023, 41: 301-316. doi: 10.1146/annurev-immunol-081022-021207
    [14] Zheng X, Chen W, Gong F, et al. The role and mechanism of pyroptosis and potential therapeutic targets in sepsis: A review[J]. Front Immunol, 2021, 12: 711939. doi: 10.3389/fimmu.2021.711939
    [15] Bauernfried S, Hornung V. Human NLRP1: From the shadows to center stage[J]. J Exp Med, 2022, 219(1): e20211405. doi: 10.1084/jem.20211405
    [16] Romberg N, Vogel T P, Canna S W. NLRC4 inflammasomopathies[J]. Curr Opin Allergy Clin Immunol, 2017, 17(6): 398-404. doi: 10.1097/ACI.0000000000000396
    [17] Wang B, Tian Y, Yin Q. AIM2 inflammasome assembly and signaling[J]. Adv Exp Med Biol, 2019, 1172: 143-155. doi: 10.1007/978-981-13-9367-9_7
    [18] Yu D, Zheng S, Sui L, et al. The role of AIM2 in inflammation and tumors[J]. Front Immunol, 2024, 15: 1466440. doi: 10.3389/fimmu.2024.1466440
    [19] Oh S, Lee J, Oh J, et al. Integrated NLRP3, AIM2, NLRC4, Pyrin inflammasome activation and assembly drive PANoptosis[J]. Cell Mol Immunol, 2023, 20(12): 1513-1526.
    [20] Liu Z, Wang C, Lin C. Pyroptosis as a double-edged sword: The pathogenic and therapeutic roles in inflammatory diseases and cancers[J]. Life Sci, 2023, 318: 121498. doi: 10.1016/j.lfs.2023.121498
    [21] Abu Khweek A, Amer A O. Pyroptotic and non-pyroptotic effector functions of caspase-11[J]. Immunol Rev, 2020, 297(1): e12910.
    [22] Rühl S, Broz P. Caspase-11 activates a canonical NLRP3 inflammasome by promoting K(+) efflux[J]. Eur J Immunol, 2015, 45(10): 2927-2936.
    [23] González P, Lozano P, Ros G, et al. Hyperglycemia and oxidative stress: An integral, updated and critical overview of their metabolic interconnections[J]. Int J Mol Sci, 2023, 24(11): 9352.
    [24] Russell-Guzmán J, Américo-Da Silva L, Cadagan C, et al. Activation of the ROS/TXNIP/NLRP3 pathway disrupts insulin-dependent glucose uptake in skeletal muscle of insulin-resistant obese mice[J]. Free Radic Biol Med, 2024, 222: 187-198. doi: 10.1016/j.freeradbiomed.2024.06.011
    [25] Ji K, Chen L, Wang X, et al. Integrating single-cell RNA sequencing with spatial transcriptomics reveals an immune landscape of human myometrium during labour[J]. Clin Transl Med, 2023, 13(4): e1234. doi: 10.1002/ctm2.1234
    [26] Liu P, Zhang Z, Li Y. Relevance of the pyroptosis-related inflammasome pathway in the pathogenesis of diabetic kidney disease[J]. Front Immunol, 2021, 12: 603416. doi: 10.3389/fimmu.2021.603416
    [27] Liu Y, Lei H, Zhang W, et al. Pyroptosis in renal inflammation and fibrosis: Current knowledge and clinical significance[J]. Cell Death Dis, 2023, 14: 472. doi: 10.1038/s41419-023-06005-6
    [28] Huang R, Fu P, Ma L. Kidney fibrosis: From mechanisms to therapeutic medicines[J]. Signal Transduct Target Ther, 2023, 8(1): 129. doi: 10.1038/s41392-023-01379-7
    [29] 胡雪茹. 吴茱萸次碱对糖尿病肾病足细胞损伤的保护作用及相关机制研究[D]. 合肥: 安徽医科大学, 2022.
    [30] Feng L, Feng Y, Ren Q, et al. Mesangial cells in diabetic kidney disease: from mechanisms to therapeutic implications[J]. Int J Biol Sci, 2025, 21(11): 4762-4781. doi: 10.7150/ijbs.114907
    [31] Hu S, Hang X, Wei Y, et al. Crosstalk among podocytes, glomerular endothelial cells and mesangial cells in diabetic kidney disease: an updated review[J]. Cell Commun Signal, 2024, 22(1): 136.
    [32] Williams B M, Cliff C L, Lee K, et al. The role of the NLRP3 inflammasome in mediating glomerular and tubular injury in diabetic nephropathy[J]. Front Physiol, 2022, 13: 907504. doi: 10.3389/fphys.2022.907504
    [33] Thomas H Y, Ford Versypt A N. Pathophysiology of mesangial expansion in diabetic nephropathy: Mesangial structure, glomerular biomechanics, and biochemical signaling and regulation[J]. J Biol Eng, 2022, 16(1): 19.
    [34] Ostendorf T, Boor P, van Roeyen C R C, et al. Platelet-derived growth factors (PDGFs) in glomerular and tubulointerstitial fibrosis[J]. Kidney Int Suppl, 2014, 4(1): 65-69.
    [35] Melchinger I, Guo K, Li X, et al. VCAM-1 mediates proximal tubule-immune cell cross talk in failed tubule recovery during AKI-to-CKD transition[J]. Am J Physiol Renal Physiol, 2024, 327(4): F610-F622. doi: 10.1152/ajprenal.00076.2024
    [36] Thomas J M, Ling Y H, Huuskes B, et al. IL-18 (interleukin-18) produced by renal tubular epithelial cells promotes renal inflammation and injury during deoxycorticosterone/salt-induced hypertension in mice[J]. Hypertension, 2021, 78(5): 1296-1309. doi: 10.1161/HYPERTENSIONAHA.120.16437
    [37] Meng X M, Nikolic-Paterson D J, Lan H Y. TGF-β: The master regulator of fibrosis[J]. Nat Rev Nephrol, 2016, 12(6): 325-338. doi: 10.1038/nrneph.2016.48
    [38] Yu X Y, Sun Q, Zhang Y M, et al. TGF-β/smad signaling pathway in tubulointerstitial fibrosis[J]. Front Pharmacol, 2022, 13: 860588. doi: 10.3389/fphar.2022.860588
    [39] Wang W, Wang X, Chun J, et al. Inflammasome-independent NLRP3 augments TGF-β signaling in kidney epithelium[J]. J Immunol, 2013, 190(3): 1239-1249. doi: 10.4049/jimmunol.1201959
    [40] Liu Y, Lei H, Zhang W, et al. Pyroptosis in renal inflammation and fibrosis: Current knowledge and clinical significance[J]. Cell Death Dis, 2023, 14(7): 472. doi: 10.1038/s41419-023-06005-6
    [41] Coll R C, Hill J R, Day C J, et al. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition[J]. Nat Chem Biol, 2019, 15(6): 556-559. doi: 10.1038/s41589-019-0277-7
    [42] Jiang H, He H, Chen Y, et al. Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders[J]. J Exp Med, 2017, 214(11): 3219-3238. doi: 10.1084/jem.20171419
    [43] Burdette B E, Esparza A N, Zhu H, et al. Gasdermin D in pyroptosis[J]. Acta Pharm Sin B, 2021, 11(9): 2768-2782. doi: 10.1016/j.apsb.2021.02.006
    [44] Jin Y, Liu Y, Xu L, et al. Novel role for caspase 1 inhibitor VX765 in suppressing NLRP3 inflammasome assembly and atherosclerosis via promoting mitophagy and efferocytosis[J]. Cell Death Dis, 2022, 13(5): 512. doi: 10.1038/s41419-022-04966-8
    [45] Liu Z, Wang C, Rathkey J K, et al. Structures of the gasdermin D C-terminal domains reveal mechanisms of autoinhibition[J]. Structure, 2018, 26(5): 778-784. doi: 10.1016/j.str.2018.03.002
    [46] Dai Z, Liu W C, Chen X Y, et al. Gasdermin D-mediated pyroptosis: Mechanisms, diseases, and inhibitors[J]. Front Immunol, 2023, 14: 1178662.
    [47] Hu J J, Liu X, Xia S, et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation[J]. Nat Immunol, 2020, 21(7): 736-745. doi: 10.1038/s41590-020-0669-6
    [48] Zahid A, Li B, Kombe A J K, et al. Pharmacological inhibitors of the NLRP3 inflammasome[J]. Front Immunol, 2019, 10: 2538. doi: 10.3389/fimmu.2019.02538
    [49] Suganya N, Dornadula S, Chatterjee S, et al. Quercetin improves endothelial function in diabetic rats through inhibition of endoplasmic reticulum stress-mediated oxidative stress[J]. Eur J Pharmacol, 2018, 819: 80-88. doi: 10.1016/j.ejphar.2017.11.034
    [50] Choe J Y, Kim S K. Quercetin and ascorbic acid suppress fructose-induced NLRP3 inflammasome activation by blocking intracellular shuttling of TXNIP in human macrophage cell lines[J]. Inflammation, 2017, 40(3): 980-994. doi: 10.1007/s10753-017-0542-4
  • [1] 杨明, 吕小星, 徐顺利.  TP53通过MMP1信号通路促进NIH-3T3焦亡并抑制细胞侵袭及迁移, 昆明医科大学学报. 2025, 46(6): 54-63. doi: 10.12259/j.issn.2095-610X.S20250607
    [2] 李文超, 李雪, 林珊珊, 马昀, 康国瑞, 陈烨.  三芪口服液对糖尿病肾病大鼠糖酵解、肾脏细胞凋亡及Keap1-Nrf2 信号通路的影响, 昆明医科大学学报. 2025, 46(12): 1-7.
    [3] 赵晓妤, 张敏雁, 陈惠雅, 崔婷婷, 黄钰寒, 徐丹.  细胞焦亡相关TLR4信号通路在光线性角化病向皮肤鳞癌进展中的表达, 昆明医科大学学报. 2025, 46(11): 11-17. doi: 10.12259/j.issn.2095-610X.S20251102
    [4] 张怡雯, 王锡铭, 李子龙, 张新章, 陈昌贤, 刘为军, 张振勇.  人工智能在肛肠疾病诊治中的研究进展, 昆明医科大学学报. 2024, 45(2): 1-6. doi: 10.12259/j.issn.2095-610X.S20240201
    [5] 王玲, 秦祥川, 李金秋, 阿仙姑·哈斯木.  CD147通过AIM2炎症小体介导宫颈癌细胞焦亡和增殖, 昆明医科大学学报. 2024, 45(1): 15-21. doi: 10.12259/j.issn.2095-610X.S20240103
    [6] 陈潇.  基于决策树分类模型的糖尿病肾病进展预测量表的研制, 昆明医科大学学报. 2024, 45(8): 109-116. doi: 10.12259/j.issn.2095-610X.S20240816
    [7] 王静, 米弘瑛, 张熠, 李丽, 余建华, 刘丽巧, 刘庆瑜, 王立伟.  细胞焦亡参与早期子鼠坏死性小肠结肠炎的发病, 昆明医科大学学报. 2023, 44(1): 25-30. doi: 10.12259/j.issn.2095-610X.S20230124
    [8] 熊煜欣, 杨莹.  糖尿病肾小管病研究进展, 昆明医科大学学报. 2023, 44(9): 148-154. doi: 10.12259/j.issn.2095-610X.S20230920
    [9] 陈怡璇, 王琳, 夏秀宏, 彭在坤, 丁奕, 史润娇, 雷学芬.  自噬在肝细胞癌中的作用机制研究进展, 昆明医科大学学报. 2023, 44(4): 159-164. doi: 10.12259/j.issn.2095-610X.S20230416
    [10] 赵玲, 钟洪玲, 高歆茹, 李妹, 毛婷婷, 李荣勇, 柯亭羽.  SGLT-2抑制剂延缓糖尿病肾病进展的临床疗效, 昆明医科大学学报. 2023, 44(5): 60-65. doi: 10.12259/j.issn.2095-610X.S20230527
    [11] 张桂煊, 石鑫, 李伟, 叶淑华.  影像组学在肾上腺肿瘤中的研究进展, 昆明医科大学学报. 2022, 43(3): 142-147. doi: 10.12259/j.issn.2095-610X.S20220324
    [12] 龙熙翠, 刘贝贝, 卢绍波, 李志红, 金文娇, 陆金芝, 韩雪松.  细胞焦亡因子Caspase-1、IL-1β与IL-18在子宫内膜息肉组织中的表达和意义, 昆明医科大学学报. 2021, 42(9): 51-56. doi: 10.12259/j.issn.2095-610X.S20210917
    [13] 王小莹, 刘作金, 申丽娟.  缺血再灌注损伤与细胞焦亡的相关性研究进展, 昆明医科大学学报. 2020, 41(12): 142-147. doi: 10.12259/j.issn.2095-610X.S20201240
    [14] 杨丹.  间充质干细胞的旁分泌作用对糖尿病肾病的影响, 昆明医科大学学报. 2016, 37(10): -.
    [15] 李会芳.  糖尿病肾病易感基因位点多态性的交互作用, 昆明医科大学学报. 2015, 36(06): -1.
    [16] 张席军.  中期因子及CTGF与糖尿病肾病患者纤维化相关因子关系探讨, 昆明医科大学学报. 2015, 36(04): -1.
    [17] 王兴宁.  尿微量白蛋白与肌酐比值在2型糖尿病早期肾损伤中的应用, 昆明医科大学学报. 2014, 35(09): -1.
    [18] 唐丽丽.  GLP-1与2型糖尿病及糖尿病肾病的相关性研究, 昆明医科大学学报. 2012, 33(01): -.
    [19] 丝氨酸蛋白酶抑制剂对新生血管抑制作用的研究进展, 昆明医科大学学报. 2011, 32(04): -.
    [20] 李梅蕊.  PC-1基因多态性与2型糖尿病及糖尿病肾病的相关性研究, 昆明医科大学学报. 2008, 29(01): -.
  • 加载中
图(2)
计量
  • 文章访问数:  47
  • HTML全文浏览量:  33
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-11-17
  • 网络出版日期:  2026-01-06

目录

    /

    返回文章
    返回