Effects of MMP-1 and MMP-7 on Pulmonary Hypertension in Rats
-
摘要:
目的 探究MMP-1和MMP-7在肺动脉高压(pulmonary arterial hypertension,PAH)发展中的作用。 方法 采用ELISA检测PAH患者血清中的MMPs(MMP-1、MMP-2、MMP-7、MMP-9、MMP-10、MMP-14)的含量并选择出2种MMPs进行动物体内实验。收集临床信息并比较PAH患者和健康人的体重指数(body mass index, BMI)、NYHA心功能等级、6 min步行距离(6 min walking distance,6MWD)、脑钠肽(brain natriuretic peptide,BNP)、平均肺动脉压(mean pulmonary arterial pressure,mPAP)、甘油三酯(triglyceride,TGs)、低密度脂蛋白(low-density lipoprotein,LDL)、总胆固醇(total cholesterol,TC)、血红蛋白(hemoglobin,HB)、心率(heart rate,HR)等指标的差异。采用野百合碱诱导PAH大鼠模型,然后使用过表达MMP-1质粒和shMMP-7质粒分别上调和下调PAH大鼠中MMP-1和MMP-7的表达。通过苏木精-伊红染色法 ( hematoxylin-eosin staining,HE)观察肺动脉病理变化,Masson染色观察肌纤维和胶原纤维的变化,免疫荧光检测α-SMA和VWF,对左心室、右心室和室间隔进行称重后计算右心室肥厚指数。 结果 与健康人相比,PAH患者血清中的MMP-1(P < 0.0001)、MMP-2(P < 0. 001)、MMP-7(P < 0.01)、MMP-9(P < 0.001)、MMP-10(P < 0.001)、MMP-14(P < 0.01)含量升高,6MWD降低(P < 0.05),BNP含量升高(P < 0.001),NYHA分级升高(P < 0.0001)。与对照组相比,PAH大鼠的MMP-1(P < 0.0001)和MMP-7(P < 0.0001)在肺组织中蛋白表达升高,右心室肥厚指数增加(P < 0.0001),肺动脉血管增厚(P < 0.05),胶原纤维沉积增多(P < 0.05),α-SMA(P < 0.05)和VWF(P < 0.05)在血管中表达增多。与PAH组相比,在PAH大鼠中过表达MMP-1促进PAH发展,而干扰MMP-7则延缓其发展。 结论 MMPs(MMP-1、MMP-2、MMP-7、MMP-9、MMP-10、MMP-14)在肺动脉高压患者血清中升高。MMP-1和MMP-7促进肺动脉高压大鼠模型的肺动脉血管重塑、肺纤维化和右心室功能不全。 Abstract:Objective To explore the effects of MMP-1 and MMP-7 on pulmonary arterial hypertension (PAH). Methods The contents of MMPs (MMP-1, MMP-2, MMP-7, MMP-9, MMP-10, MMP-14) in the serum of PAH patients and healthy controls were detected and two MMPs were selected for in vivo experiments. Clinical information was collected and body mass index (BMI), NYHA cardiac function class, 6 min walking distance (6MWD), brain natriuretic peptide (BNP), mean pulmonary arterial pressure (mPAP), triglyceride (TGs), low-density lipoprotein (LDL), total cholesterol (TC), hemoglobin (HB), heart rate (HR) were compared between PAH patients and healthy controls. The PAH rat model was induced by monocrotaline, and then MMP-1 overexpression plasmid and shMMP-7 plasmid were used to up-regulate and down-regulate the expression of MMP-1 and MMP-7, respectively. Hematoxylin-eosin (HE) staining was used to observe the pathological of PAH, Masson staining was used to observe the changes of muscle fibers and collagen fibers, and immunofluorescence was used to detect the expression of α-SMA and VWF. The left ventricle, right ventricle and interventricular septum were weighed and the right ventricular hypertrophy index was calculated. Results The serum levels of MMP-1 (P < 0.0001), MMP-2 (P < 0.001), MMP-7 (P < 0.01), MMP-9 (P < 0.001), MMP-10 (P < 0.001) and MMP-14 (P < 0.01) in PAH patients were significantly higher than those in healthy controls. 6MWD was significantly decreased (P < 0.05), BNP level was increased (P < 0.001), NYHA class was increased (P < 0.0001). Compared with the control group, the protein expression of MMP-1 (P < 0.0001) and MMP-7 (P < 0.0001) in lung tissue, right ventricular hypertrophy index (P < 0.0001), pulmonary artery vascular thickness (P < 0.05), and collagen fiber deposition (P < 0.05) were increased in PAH rats. The expressions of α-SMA (P < 0.05) and VWF (P < 0.05) in blood vessels were increased in PAH rats than control rats. Compared with PAH group, overexpression of MMP-1 in PAH rats promoted the development of PAH, while interference with MMP-7 delayed its development. Conclusions The serum levels of MMPs (MMP-1, MMP-2, MMP-7, MMP-9, MMP-10, MMP-14) are increased in patients with PAH. MMP-1 and MMP-7 promote pulmonary artery remodeling, pulmonary fibrosis and right ventricular dysfunction in PAH rats. -
Key words:
- MMP-1 /
- MMP-7 /
- Pulmonary arterial hypertension
-
结核病是结核杆菌(tubercle bacillus,TB)感染引起的全球性疾患,其发病率和死亡率均很高[1-2]。据《2022年全球结核病报告》[3],全球2021年约新增
1060 万人,其中,成年男性600万人,成年女性340万人,儿童120万人。病毒性肝炎是多种类型肝炎病毒引起的以肝脏损害为主表现的传染病,其中我国主要以乙型(hepatitis B virus,HBV)、丙型(hepatitis C virus,HCV)最常见,病毒性肝病和结核病均是我国公共卫生问题,它们危害人民身心健康、增加疾病负担。肺外结核(extra-pulmonary tuberculosis,EPTB)是指发生于肺部以外的其他脏器的结核病[4]。EPTB的治疗时间较肺结核(pulmonary tuberculosis,PTB)更长,病情更重,在合并病毒性肝炎这部分患者中更容易发生肝损害而导致停用抗结核药,产生的后果更容易对公共卫生造成严重的负担[5]。本研究回顾病毒性肝炎合并肺结核患者的临床资料,应用多因素Logistic回归筛选并发EPTB的独立危险因素作为预测因子,建立预测模型,为临床医师对病毒性肝炎合并肺外结核患者诊治提供参考。1. 资料与方法
1.1 研究对象
选取2015年1月至2020年12月在昆明市第三人民医院住院治疗,诊断为病毒性肝炎合并PTB的患者为研究对象,其中年龄最小者13岁,最大者81岁,且所有研究者均获得本人或监护人知情同意。本研究已通过昆明市第三人民医院伦理委员会审批通过(昆三伦:2022061615)。
1.2 纳入标准和排除标准
纳入标准:本研究病毒性肝炎患者包括HBV[6]和HCV[7]感染者。肺外结核诊断标准[8−9]:(1)组织病理示慢性肉芽肿,且qPCR找到TB核酸片段;(2)局部体液抗酸杆菌涂片阳性或培养出TB;(3)临床表现支持结核、排除其他疾病,且诊断性抗结核有效。肺结核诊断标准:满足《肺结核诊断标准》(WS288-2017)[10]。
排除标准:(1)非结核分支杆菌病;(2)HIV阳性、梅毒等传染病,合并自身免疫、疾病恶性肿瘤、重型心脑血管疾病者;(3)吸毒、长期大剂量激素、免疫制剂、生物制剂治疗患者。
1.3 样本量估算
目前文献中,缺乏病毒性肝炎并PTB患者中EPTB的发生率数据报导,为此,参考PTB并发EPTB的相关文献,进行样本量粗略计算。采用PASS2021软件,参数设置为a = 0.05(双侧检验),把握度 = 1-β = 0.8,结果为需要308例研究对象,再考虑10%的失访率,至少需要385例的研究对象,因目前缺乏研究对象的发生率数据,纳入了选取期间满足纳入标准的所有患者427例,满足需求,可保证研究的科学性。
1.4 数据收集
在昆明市第三人民医院信息系统中查阅病毒性肝炎合并PTB患者的住院资料,并收集其临床资料:包括年龄、性别、民族、临床症状、体征、体重指数(body mass index,BMI)及、谷氨酰转肽酶(glutamyl transpeptidas,GGT)、白蛋白(albumin,ALB)、血小板(platelet,PLT)、血清总胆红素(total bilirubin,TBIL)、白细胞(white blood cell,WBC)、淋巴细胞(lymphocyte,LYMP)、碱性磷酸酶(alkaline phosphatase,ALP)、红细胞(red blood cell,RBC)、中性粒细胞(neutrophils,NEUT)、血红蛋白(hemoglobin,HB)、谷丙转氨酶(alanine transaminase,ALT)、尿酸(uric acid,UA)、球蛋白(globulin,GLB)、CFP-10、谷草转氨酶(aspartate aminotransferase,AST)、肌酐(creatinine,Cr)、尿素氮(urea)、血沉(erythrocyte sedimentation rate,ESR)、甘油三酯(triglyceride,TG)、结核特异性抗原A(ESAT-6)等实验室资料。痰涂片采用萋-尼抗酸杆菌染色显微镜检,结核菌培养采用液体快速培养和罗氏固体培养,仪器分别为贝索和BD960,血常规采用XN-10自动血细胞分析仪,血生化采用AU680 Series自动生化分析仪。
1.5 统计学分析
将收集的数据建立Excel数据库,采用SPSS 26.0分析。计数资料采用率、构成比表示,非正态分布的计量资料采用M(P25,P75)表示,呈正态分布的计量资料采用均数±标准差($ \bar x \pm s $)。Logistic回归筛选出独立危险因素作为预测因子,R 4.23 和 RStudio
1.2.5042 中“rms”包拟合列线图预测模型。采用,Hosmer-Lemeshow检验和ROC曲线评价预测模型。P < 0.05为差异有统计学意义,检验水准α = 0.05,双侧检验。2. 结果
2.1 病毒性肝炎合并肺结核患者并发肺外结核的基本临床信息
2015年1月至2020年12月病毒性肝炎合并PTB的427名患者为研究对象,其中并发肺外结核的72例为并发EPTB组,其发生率为16.86%,包括结核性胸膜炎21例(29.0%),结核性腹膜炎16例(22.0%),淋巴结结核13例(18.0%),结核性脑炎5例(6.0%),肠结核6例(8.0%),骨结核5例(6.0%),盆腔结核3例(4.0%),泌尿系统结核3例(4.0%)。其中HCV感染患者15例(占20.8%)、HBV感染59例(占81.9%),男性34例(47.2%)、女性38例(52.8%),汉族59例(81.9%),年龄中位数43岁。仅合并PTB的355例为未并发EPTB组,包括HCV感染患者70例(占19.7%),HBV感染299例(占84.2%),其中男性258例(72.7%),女性97例(227.3%),汉族321例(90.4%),年龄中位数43岁,依据BMI体重过轻者16例(22.2%)、正常42例(58.3%)、超重14例(19.5%),出现发热12例(16.7%)。在并发与未并发EPTB比较中,性别、民族、HB、Cr、ESAT-6、CFP-10差异有统计学意义(P < 0.05),见表1。
表 1 并发与未并发肺外结核患者的临床特征比较[n(%)/M(P25,P75)]Table 1. Comparison of clinical characteristics between patients with and without extrapulmonary tuberculosis. [n(%)/M(P25,P75)]指标 并发EPTB(n = 72) 未并发EPTB组(n = 355) Z/χ2 P 性别(男) 34(47.2) 258(72.7) 17.938 < 0.001* 年龄 43(33.0~55.0) 43(30.0~55.0) −0.850 0.396 民族(汉) 59(81.9) 321(90.4) 4.392 0.036* 饮酒史 11(15.3) 66(18.6) 0.445 0.505 吸烟史 14(19.4) 81(22.8) 0.394 0.530 BMI (kg/m2) 体重过轻 16(22.2) 95(26.8) 正常 42(58.3) 216(60.8) −1.404 0.160 超重 14(14.5) 44(12.4) HCV 15(20.8) 70(19.7) 0.047 0.829 HBV 59(81.9) 299(84.2) 0.230 0.632 发热 12(16.7) 66(18.6) 0.149 0.700 WBC(109/L) 5.375(4.723~7.75) 5.74(4.5~7.1) −0.418 0.676 RBC(1012/L) 4.52(4.13~4.87) 4.58(4.15~5.07) −1.009 0.313 PLT(109/L) 226(169.00~304.75) 218(163.00~273.00) −1.690 0.091 HB(g/L) 133(115.00~141.00) 137(121.00~152.00) −2.269 0.023 TBIL(μmol/L) 11.05(7.33~18.38) 10.2(7.60~15.60) −0.897 0.370 Cr(μmol/L) 58.9(52~68.78) 64.1(55.3~75.6) −2.485 0.013* ALT(U/L) 22.5(11~36.45) 22(14.7~40) −0.748 0.455 AST(U/L) 23(17.25~39.5) 25(18~40) −0.892 0.372 ALB(g/L) 34.6(30.93~37.50) 36.1(32.2~39.41) −1.740 0.082 TG 0.945(0.655~1.482) 0.99(0.68~1.58) −0.729 0.466 ESAT-6 78.8(41~143) 55.2(22.16~103.4) −3.342 0.001* CFP-10 79.5(28.37~158.76) 56.54(13.5~126.96) −2.318 0.020* *P < 0.05。 2.2 并发肺外结核的影响因素分析
将研究指标进行单因素分析,P < 0.05者即性别、民族、PLT、TG、ESAT-6纳入多因素Logistic回归分析,结果显示:性别(OR = 0.425,95%CI:0.250~0.722,P = 0.02)、TG(OR = 0.837,95%CI:0.717~0.978,P = 0.025)、ESAT-6(OR = 1.007,95%CI:1.003~1.011)是病毒性肝炎合并PTB患者并EPTB的独立影响因素,见表2。
表 2 病毒性肝炎合并肺结核患者并发肺外结核的单因素分析Table 2. Univariate analysis of extrapulmonary tuberculosis in patients with viral hepatitis complicated by pulmonary tuberculosis变量 单因素二元Logistic回归 OR(95%CI) P BMI(kg/m2) 1.256(0.880~1.793) 0.209 性别 0.376(0.224~0.631) < 0.001* 年龄 0.993(0.976~1.010) 0.399 民族 2.080(1.036~4.176) 0.039* 饮酒史 0.790(0.394~1.583) 0.506 吸烟史 0.801(0.448~1.435) 0.456 乙肝 0.681(0.392~1.183) 0.172 丙肝 1.689(0.974~2.927) 0.062 发热 0.906(0.406~1.782) 0.774 WBC(109/L) 0.993(0.980~1.109) 0.906 NEUT(%) 1.008(0.989~1.028) 0.405 PLT(109/L) 1.002(1.000~1.004) 0.030* HB(g/L) 0.942(0.982~1.001) 0.097 RBC(1012/L) 0.942(0.789~1.126) 0.513 TBIL(μmol/L) 1.071(0.989~1.026) 0.464 Cr (μmol/L) 0.993(0.980~1.006) 0.309 ALT(U/L) 0.998(0.994~1.003) 0.489 AST(U/L) 0.998(0.991~1.005) 0.568 ALB(g/L) 0.983(0.946~1.022) 0.396 TG 0.829(0.714~0.963) 0.014* ESAT-6 1.007(1.003~1.011) < 0.001* CFP-10 1.002(0.999~1.004) 0.161 *P < 0.05。 2.3 评价三者联合对并发肺外结核的预测价值
绘ROC曲线,见图1,三者联合的预测效能为:AUC:0.693,95%CI:
0.6291 ~0.7574 ),其中最佳截断值0.192,对应的灵敏度和特异度分别为0.611、0.710,阳性似然比和阴性似然比分别为:2.103、0.548,见表3。表 3 性别、TG、ESAT-6及model预测并发EPTB的ROC曲线分析Table 3. ROC curve analysis for sex,TG,ESAT-6,and model for predicting concomitant extrapulmonary tuberculosis (EPTB)检验变量 AUC(95%CI) 最佳截断值 灵敏度(%) 特异度(%) 约登指数 阳性似然比 阴性似然比 P 性别 0.613(0.551~0.676) - 50.0 72.7 0.227 1.831 0.678 0.002* TG 0.527(0.455~0.599) 2.025 95.8 16.9 0.127 1.153 0.248 0.466 ESAT-6 0.625(0.555~0.695) 119.278 37.5 83.1 0.206 2.217 0.752 0.001* 模型 0.693(0.629~0.757) 0.192 61.1 71.0 0.741 2.103 0.548 < 0.001* *P < 0.05。 2.4 列线图呈现预测模
以性别、TG、ESAT-6这3个并发EPTB的独立危险因素作为预测因子,基于二元logistic回归方程,运用RStudio拟合预测模型,以列线图呈现所建立的预测模型,见图2。
3. 讨论
3.1 病毒性肝炎合并肺结核患者并发EPTB的构成分析
有研究表明,EPTB占结核患者的21.8%,结核性脑炎和结核性胸膜炎是EPTB最常见的形式[11]。中国以往的报告显示,EPTB占结核病人口的31.3%,常见的EPTB形式是骨结核和结核性胸膜炎。据国内多中心研究报道,PTB患者合并EPTB的并发率为11.93%,并发率依次为结核性脑膜炎2.72%、颈部淋巴结结核1.93%[12]。本研究结果表明,病毒性肝炎并肺结核患者EPTB的并发率为16.86%,其并发率高于普通人群,考虑这类患者肝脏合成能力下降,白蛋白合成降低,机体免疫下降,结核杆菌更容易在肺外组织、器官活动。此外,笔者的研究中,EPTB占比最高的是结核性胸膜炎为29%,在PTB合并病毒性肝炎这部分患者中结核性胸膜炎是发病率最高的,与之前的报道稍有不同,分析原因:(1)结核为慢性消耗性疾病,容易出现前白蛋白、白蛋白减少,免疫降低,而肝炎患者同样容易产生低蛋白血症、免疫功能下降,免疫功能下降是结核性胸膜炎的危险因素,同时低蛋白血症容易形成胸腔积液;(2)胸膜应对结核分枝杆菌分泌的毒素时产生强烈的炎症反应、免疫损伤。因此,有胸腔积液的病毒性肝炎合并肺结核的患者应重点进行鉴别诊断,以适时延长抗结核疗程为9~12个月让患者获益。
3.2 性别、TG、ESAT-6在并发EPTB中的临床价值分析
对病毒性肝炎合并PTB的患者收集到的人口学特征、实验室指标等进行统计学分析,单因素及多因素分析,结果显示性别、TG、ESAT-6是并发EPTB的独立影响因素(P < 0.05)。陈伟[13]教授指出,EPTB发病率男性高于女性,考虑因男性外出务工结核分枝杆菌感染的机会更大,在过度劳累、免疫力低下时容易发病。也有研究[14−15]发现,女性是患EPTB的独立危险因素,在中国香港进行的一项对
5747 名肺结核患者进行的横断面研究发现,女性EPTB的发病率高于男性,而男性肺结核发病率是高于女性。笔者发现,在病毒性肝炎合并肺结核患者中,女性并发EPTB的风险高于男性(OR = 0.425;95%CI:0.250~0.722),这与沙特阿拉伯[16]、土耳其[17]、尼泊尔[18]的研究一致。其机制可能是性别免疫二态性受性类固醇激素的调节,女性患者产生更强烈、更持久的免疫应答,和男性相比更不容易受到病毒感染,而女性更有效的抗病毒免疫防御会产生强烈的炎症反应[19]。病毒感染合并肺结核感染与单感染肺结核患者相比,这些患者的结核特异性IFN-γ+CD38+CD4+和IFN-γ+HLA-DR+CD4+ t细胞水平降低。这表明病毒感染合并肺结核感染这类人对结核的CD4+ t细胞免疫反应受损,在女性产生强烈炎症反应的时候更容易并发EPTB。为此,对病毒性肝炎合并PTB的女性患者需要密切关注CD4+ t的数值变化,其降低时需警惕EPTB的发生。甘油三酯(TG)、血清总胆固醇(TC)等脂类维持生命细胞基础代谢的必不可少的物质,也是TB感染期重要的能量物质。TB进入机体后,TB生长、繁殖、免疫逃逸等一系列过程与部分脂类代谢基因的表达密切相关。Chen等[20]发现,游离脂肪酸、TG、TC等脂类在PTB患者中表达有降低,然而TB治疗后又恢复正常,可能是由于肺结核患者脂类合成减少、代谢增加[21]。Matthew等[22]发现,PTB的肺部肉芽肿内的脂类含量明显增加。TG是干酪样坏死中的重要成分,是内源性能量和游离脂肪酸的储存物质,也是TB重要的营养物质[23],导致了PTB并发EPTB患者对TG消耗更多。笔者的研究发现高水平TG是EPTB的保护因素(OR = 0.834;95%CI:0.710-0.980),这也可说明EPTB患者需要更多的TG参与肉芽肿的形成,在多系统发生结核感染的时候需要消耗更多的甘油脂类物质,与文献报告的一致,在临床工作中可关注TG的变化情况,如TG水平较低者注意排查EPTB。
早期分泌性抗原(ESAT-6)是TB分泌的重要毒力因子之一,参与调控巨噬细胞自噬、凋亡、炎症激活等过程。其通过抑制机体巨噬细胞吞噬杀菌和自噬反应抵抗能力,减轻机体对TB的清除力,同时诱导巨噬细胞凋亡反应促进TB扩散定植,引起机体固有免疫防御受损、抗原提呈延迟[24]。本研究发现ESAT-6是病毒性肝炎合并肺结核并发肺外结核者的(OR = 1.007;95%CI:1.003~1.011)独立危险因素,TB感染机体后ESAT-6诱导的巨噬细胞的凋亡与固有免疫细胞的大量坏死促进TB的扩散、定植,引发TB的全身感染[25],ESAT-6也在积极抑制辅助T细胞的保护性免疫反应导致抑制相关促炎细胞因子的分泌,造成机体免疫紊乱,加速TB感染。
3.3 基于性别、TG、ESAT-6建立的模型预测并发EPTB的临床意义
本研究采用性别、TG、ESAT-6这三者联合预测病毒性肝炎合并肺结核患者并发EPTB的潜在风险并构建模型,可视化模型,具有实用性和科学性,使用ROC曲线进行了评价。在笔者的研究中,基于性别、TG、ESAT-6建立的预测模型的AUC:0.693,95%CI:
0.6291 ~0.7574 ),最佳截断值0.192,灵敏度0.611、特异度0.710、阳性似然比2.103、阴性似然比0.548。该模型预测性能一般,但目前国内外无相关模型报道,其能够在一定程度上帮助临床医师更加直观地预判此类人群并发EPTB的风险。国内外的文章报道PTB并发EPTB的较多,但是报道病毒性肝炎合并PTB患者并发EPTB的不多见。本研究发现女性、低水平TG、ESAT-6是其独立危险因素,不足之处在于小样本单中心研究,有待增大样本量多中心研究。 -
图 1 健康人和PAH患者临床指标的差异
A:比较健康人与PAH组的6MWD差异;B:比较健康人与PAH组的BMI差异;C:比较健康人与PAH组的BNP差异;D:比较健康人与PAH组的NYHA分级差异;E:比较健康人与PAH组的LDH差异;F:比较健康人与PAH组的TGs差异;G:比较健康人与PAH组的mPAP差异;H:比较健康人与PAH组的HR差异;I:比较健康人与PAH组的HB差异;J:比较健康人与PAH组的TC差异。*P < 0.05,***P < 0.001,****P < 0.0001。
Figure 1. Differences of clinical indicators between healthy people and patients with PAH
图 2 Ctrl组与PAH患者血清中MMPs的水平
A:ELISA试剂盒检测健康人和PAH患者MMP-1水平;B:ELISA试剂盒检测健康人和PAH患者MMP-2水平;C:ELISA试剂盒检测健康人和PAH患者MMP-7水平;D:ELISA试剂盒检测健康人和PAH患者MMP-9水平;E:ELISA试剂盒检测健康人和PAH患者MMP-10水平;F:ELISA试剂盒检测健康人和PAH患者MMP-14水平。**P < 0.01,***P < 0.001,****P < 0.0001。
Figure 2. Concentration levels of MMPs in serum of patients with Ctrl group and PAH
图 3 筛选3个shMMP-7干扰质粒对MMP-7蛋白水平和mRNA水平的干扰效率
A和B:western blot检测比较3个shMMP-7干扰质粒对MMP-7蛋白表达的干扰效率; C:qRT-PCR检测比较3个shMMP-7干扰质粒对MMP-7 mRNA的干扰效率。*P < 0.05,**P < 0.01,***P < 0.001,****P < 0.0001。
Figure 3. Interference efficiency of three shMMP-7 interfering plasmids screened on MMP-7 protein level and mRNA level
图 5 MMP-1过表达质粒和MMP-7干扰质粒对PAH的蛋白表达水平和病理作用
A-C:western blot检测过表达MMP-1质粒和干扰MMP-7质粒的转染效率; D:HE染色观察MMP-1和MMP-7对PAH的形态学影响(40×);E:Masson染色观察MMP-1和MMP-7对PAH肌纤维和胶原纤维的影响(40×)。****P < 0.0001。
Figure 5. Protein expression levels and pathological effects of MMP-1 overexpression plasmid and MMP-7 interference plasmid on PAH
表 1 临床PAH患者和健康人的基线资料表[
$ \bar x \pm s $ /n(%)]Table 1. Baseline data table of clinical PAH patients and healthy individuals [
$ \bar x \pm s $ /n(%)]项目 健康人(n = 16) PAH患者(n = 15) 年龄(岁) 31.69 ± 11.45 69.07 ± 11.11 性别(女性) 10(62.50) 4(26.67) BMI(cm/kg2) 22.13 ± 2.68 23.60 ± 5.49 NYHA心功能等级 0 16(100.00) 0(0.00) 1 0(0.00) 6(40.00) 2 0(0.00) 9(60.00) 6MWD(m) 593.00 ± 69.19 508.67 ± 102.102 BNP(pg/mL) 55.19 ± 15.71 139.13 ± 89.37 mPAP(mmHg) 19.62 ± 1.20 19.86.25 ± 3.46 HR(次/min) ≤80 11(68.75) 10(66.67) > 80 5(31.25) 5(33.33) TGs(mmol/L) 1.74 ± 0.50 1.45 ± 0.99 LDL(mmol/L) 2.71 ± 0.55 2.63 ± 0.70 TC(mmol/L) 3.87 ± 0.55 4.41 ± 0.94 HB(g/L) 135.56 ± 11.37 141.47 ± 20.43 -
[1] Deng L,Blanco F J,Stevens H,et al. Microrna-143 activation regulates smooth muscle and endothelial cell crosstalk in pulmonary arterial hypertension[J]. Circ Res,2015,117(10):870-883. doi: 10.1161/CIRCRESAHA.115.306806 [2] Boutet K,Montani D,Jaïs X,et al. Therapeutic advances in pulmonary arterial hypertension[J]. Ther Adv Respir Dis,2008,2(4):249-265. doi: 10.1177/1753465808094762 [3] Liu Y,Zhang H,Yan L,et al. Mmp-2 and mmp-9 contribute to the angiogenic effect produced by hypoxia/15-hete in pulmonary endothelial cells[J]. J Mol Cell Cardiol,2018,121:36-50. doi: 10.1016/j.yjmcc.2018.06.006 [4] Tuder R M,Stacher E,Robinson J,et al. Pathology of pulmonary hypertension[J]. Clin Chest Med,2013,34(4):639-650. doi: 10.1016/j.ccm.2013.08.009 [5] George J,Sun J,D'armiento J. Transgenic expression of human matrix metalloproteinase-1 attenuates pulmonary arterial hypertension in mice[J]. Clin Sci (Lond),2012,122(2):83-92. doi: 10.1042/CS20110295 [6] Takahashi J,Orcholski M,Yuan K,et al. Pdgf-dependent β-catenin activation is associated with abnormal pulmonary artery smooth muscle cell proliferation in pulmonary arterial hypertension[J]. FEBS Lett,2016,590(1):101-109. doi: 10.1002/1873-3468.12038 [7] Safdar Z,Tamez E,Chan W,et al. Circulating collagen biomarkers as indicators of disease severity in pulmonary arterial hypertension[J]. JACC Heart Fail,2014,2(4):412-421. doi: 10.1016/j.jchf.2014.03.013 [8] Pittayapruek P,Meephansan J,Prapapan O,et al. Role of matrix metalloproteinases in photoaging and photocarcinogenesis[J]. Int J Mol Sci,2016,17(6):868. doi: 10.3390/ijms17060868 [9] Yao J,Xiong M,Tang B,et al. Simvastatin attenuates pulmonary vascular remodelling by down-regulating matrix metalloproteinase-1 and -9 expression in a carotid artery-jugular vein shunt pulmonary hypertension model in rats[J]. Eur J Cardiothorac Surg,2012,42(5):e121-127. doi: 10.1093/ejcts/ezs445 [10] Lee E,Grodzinsky A J,Libby P,et al. Human vascular smooth muscle cell-monocyte interactions and metalloproteinase secretion in culture[J]. Arterioscler Thromb Vasc Biol,1995,15(12):2284-2289. doi: 10.1161/01.ATV.15.12.2284 [11] Lepetit H,Eddahibi S,Fadel E,et al. Smooth muscle cell matrix metalloproteinases in idiopathic pulmonary arterial hypertension[J]. Eur Respir J,2005,25(5):834-842. doi: 10.1183/09031936.05.00072504 [12] Chi P L,Cheng C C,Hung C C,et al. Mmp-10 from m1 macrophages promotes pulmonary vascular remodeling and pulmonary arterial hypertension[J]. Int J Biol Sci,2022,18(1):331-348. doi: 10.7150/ijbs.66472 [13] Galiè N,Hoeper M M,Humbert M,et al. Guidelines for the diagnosis and treatment of pulmonary hypertension[J]. Eur Respir J,2009,34(6):1219-1263. doi: 10.1183/09031936.00139009 [14] Yancy C W,Jessup M,Bozkurt B,et al. 2013 accf/aha guideline for the management of heart failure: Executive summary: A report of the american college of cardiology foundation/american heart association task force on practice guidelines[J]. Circulation,2013,128(16):1810-1852. doi: 10.1161/CIR.0b013e31829e8807 [15] Condon D F,Agarwal S,Chakraborty A,et al. Novel mechanisms targeted by drug trials in pulmonary arterial hypertension[J]. Chest,2022,161(4):1060-1072. doi: 10.1016/j.chest.2021.10.010 [16] Benza R L,Miller D P,Gomberg-Maitland M,et al. Predicting survival in pulmonary arterial hypertension: Insights from the registry to evaluate early and long-term pulmonary arterial hypertension disease management (reveal)[J]. Circulation,2010,122(2):164-172. doi: 10.1161/CIRCULATIONAHA.109.898122 [17] Voelkel N F,Gomez-Arroyo J,Abbate A,et al. Pathobiology of pulmonary arterial hypertension and right ventricular failure[J]. Eur Respir J,2012,40(6):1555-1565. doi: 10.1183/09031936.00046612 [18] Harbaum L,Rhodes C J,Wharton J,et al. Mining the plasma proteome for insights into the molecular pathology of pulmonary arterial hypertension[J]. Am J Respir Crit Care Med,2022,205(12):1449-1460. doi: 10.1164/rccm.202109-2106OC [19] Overall C M,López-Otín C. Strategies for mmp inhibition in cancer: Innovations for the post-trial era[J]. Nat Rev Cancer,2002,2(9):657-672. doi: 10.1038/nrc884 [20] Drwal E,Rak A,Tworzydło W,et al. "Real life" polycyclic aromatic hydrocarbon (pah) mixtures modulate hcg,hpl and hplgf levels and disrupt the physiological ratio of mmp-2 to mmp-9 and vegf expression in human placenta cell lines[J]. Reprod Toxicol,2020,95:1-10. doi: 10.1016/j.reprotox.2020.02.006 [21] Schäfer M,Ivy D D,Nguyen K,et al. Metalloproteinases and their inhibitors are associated with pulmonary arterial stiffness and ventricular function in pediatric pulmonary hypertension[J]. Am J Physiol Heart Circ Physiol,2021,321(1):H242-h252. doi: 10.1152/ajpheart.00750.2020 [22] Thenappan T,Chan S Y,Weir E K. Role of extracellular matrix in the pathogenesis of pulmonary arterial hypertension[J]. Am J Physiol Heart Circ Physiol,2018,315(5):H1322-h1331. doi: 10.1152/ajpheart.00136.2018 [23] Frisdal E,Gest V,Vieillard-Baron A,et al. Gelatinase expression in pulmonary arteries during experimental pulmonary hypertension[J]. Eur Respir J,2001,18(5):838-845. doi: 10.1183/09031936.01.00084601 [24] Uzui H,Lee J D,Shimizu H,et al. The role of protein-tyrosine phosphorylation and gelatinase production in the migration and proliferation of smooth muscle cells[J]. Atherosclerosis,2000,149(1):51-59. doi: 10.1016/S0021-9150(99)00295-6 [25] George S J,Johnson J L,Angelini G D,et al. Adenovirus-mediated gene transfer of the human timp-1 gene inhibits smooth muscle cell migration and neointimal formation in human saphenous vein[J]. Hum Gene Ther,1998,9(6):867-877. doi: 10.1089/hum.1998.9.6-867 [26] Botney M D,Liptay M J,Kaiser L R,et al. Active collagen synthesis by pulmonary arteries in human primary pulmonary hypertension[J]. Am J Pathol,1993,143(1):121-129. [27] Wei B,Du J,Li J,et al. The modulating effect of l-arginine on collagen metabolism of pulmonary artery in pulmonary hypertension induced by a left-to-right shunt[J]. Zhonghua Yi Xue Za Zhi,2002,82(18):1273-1275. [28] Dieffenbach P B,Mallarino Haeger C,Rehman R,et al. A novel protective role for matrix metalloproteinase-8 in the pulmonary vasculature[J]. Am J Respir Crit Care Med,2021,204(12):1433-1451. doi: 10.1164/rccm.202108-1863OC [29] Wright J L,Tai H,Wang R,et al. Cigarette smoke upregulates pulmonary vascular matrix metalloproteinases via tnf-alpha signaling[J]. Am J Physiol Lung Cell Mol Physiol,2007,292(1):L125-133. doi: 10.1152/ajplung.00539.2005 [30] Saunders W B, Bayless K J, Davis G E. Mmp-1 activation by serine proteases and mmp-10 induces human capillary tubular network collapse and regression in 3d collagen matrices[J]. J Cell Sci, 2005, 118(Pt 10): 2325-2340. [31] Cui N,Hu M,Khalil R A. Biochemical and biological attributes of matrix metalloproteinases[J]. Prog Mol Biol Transl Sci,2017,147:1-73. [32] Arvidsson M,Ahmed A,Bouzina H,et al. Matrix metalloproteinase 7 in diagnosis and differentiation of pulmonary arterial hypertension[J]. Pulm Circ,2019,9(4):1-8. [33] Rosanò L,Spinella F,Di Castro V,et al. Endothelin receptor blockade inhibits molecular effectors of kaposi's sarcoma cell invasion and tumor growth in vivo[J]. Am J Pathol,2003,163(2):753-762. doi: 10.1016/S0002-9440(10)63702-9 [34] Stenmark K R,Fagan K A,Frid M G. Hypoxia-induced pulmonary vascular remodeling: Cellular and molecular mechanisms[J]. Circ Res,2006,99(7):675-691. doi: 10.1161/01.RES.0000243584.45145.3f -