Mechanism of Dendrobium Officinale Against Inflammatory Aging Based on Network Pharmacology and Molecular Docking
-
摘要:
目的 基于网络药理学、分子对接和动物实验探讨铁皮石斛抗炎性衰老的作用机制。 方法 通过数据库ETCM、Pubchem、Swiss TargetPrediction获得石斛靶点,从Rat Genome Database网站下载衰老大鼠基因,应用 STRING数据库构建PPI蛋白互作网络;利用DAVID数据库对石斛作用于老年大鼠的潜在靶点进行GO、KEGG通路分析;应用分子对接方法对石斛主要活性成分和关键作用靶点进行对接。老年大鼠灌胃石斛溶液10周后ELISA检测IL-6、IL-10蛋白表达。 结果 筛选到主要活性成分齿叶黄皮素、吴茱萸碱、吴茱萸次碱、紫花前胡,关键靶点NOS3、STAT3 、AKT1、GSK3B,主要信号通路PI3K-AKT、Calcium、EGFR酪氨酸激酶抑制剂耐药性、HIF-1、Apelin、VEGF,分子对接显示主要活性成分和关键靶点之间均能自发结合,且形成稳定的氢键。石斛中剂量组IL-6表达量较空白对照组(P < 0.01)、低剂量组(P < 0.01)和百令胶囊组(P < 0.05)降低,低剂量组IL-10表达量较空白组(P < 0.05)升高。 结论 铁皮石斛发挥抗炎性衰老的功能可能与降低老年SD大鼠血清中IL-6的含量,增加血清中IL-10的含量有关,作用机制与石斛中齿叶黄皮素、吴茱萸次碱、紫花前胡、吴茱萸碱等调控关键基因AKT1、STAT3、NOS3、GSK3B表达有关。 Abstract:Objective To explore the mechanism of Dendrobium officinale against inflammatory aging based on network pharmacology and molecular docking and experimental verification. Methods We used related databases to obtain the action targets of the main components of Dendrobium officinale and the genes of aging rats, then intersected them to obtain the final target. STRING database was used to build a protein-protein interaction(PPI) network. DAVID database was used to conduct enrichment analysis of Gene Ontology(GO) and Kyoto Encyclopedia of Gene and Genomes(KEGG). AutoDock software was to perform molecular docking verification on the main active components and key targets. Then, the aging rats were gavaged with dendrobium polysaccharide solution for ten week, the expression levels of IL-6 and IL-10 proteins were detected to verify the predicted targets. Results Through database retrieval, 28 active components and 492 target genes were screened out. There were 64 intersections. Enrichment analysis yielded 283 GO functional enrichment entries and 71 KEGG pathway enrichment entries. The main pathway is the PI3K-Akt signaling pathway, Calcium signaling pathway, EGFR tyrosine kinase inhibitor resistance, HIF-1 signaling pathway, Apelin signaling pathway, VEGF signaling pathway, etc. The results of molecular docking showed that each target(AKT1, STAT3, NOS3, GSK3B) and active ingredient(Dentatin, Rutaecarpine, Nodakenetin, Evodaiamine) spontaneously combined and formed stable hydrogen bonds. Animal experiments showed that the content of IL-6 in the medium dose group significantly decreased compared to the blank group, low dose group, and Bailing capsule group, and the content of IL-10 in the low dose group increased compared to the blank group. Conclusions Dendrobium officinale has a delaying effect on the decline of the immune system in elderly rats. It is mainly related to the decrease of IL-6 content and the increase of IL-10 content in the serum. Its mechanism may be related to the expression of key genes AKT1, STAT3, NOS3, GSK3B regulated by components in Dendrobium officinale, such as Dentatin, Rutaecarpine, Nodakenetin, and Evodaiamine. -
Key words:
- Dendrobium officinale /
- Inflammatory aging /
- Network pharmacology /
- IL-6 /
- IL-10
-
表 1 靶点网络中Degree排名前10的靶点
Table 1. The top 10 target of Degree in the component-target network
靶点名称 Degree BC(中介中心性) CC(接近中心性) AKT1 43 0.235981041 0.746835443 MAPK3 37 0.081326682 0.694117647 STAT3 36 0.077079997 0.686046512 NOS3 29 0.053439074 0.621052632 GSK3B 28 0.045054203 0.621052632 PTGS2 25 0.050639569 0.584158416 MTOR 30 0.047754481 0.627659574 MMP9 26 0.020865854 0.584158416 ICAM1 22 0.026581134 0.561904762 VCAM1 18 0.019630032 0.541284404 表 2 靶点网络中Degree排名前9的成分
Table 2. The top 9 component of Degree in the component-target network
成分 Degree 名称 Dentatin 115 齿叶黄皮素 3-O-Methylgigantol 112 3-O-甲基甘醇 2-Hydroxy-4,7-Dimethoxy-9,10-Dihydrophenanthrene 108 2-羟基-4,7-二甲氧基-9,10-二氢菲 Rutaecarpine 108 吴茱萸次碱 Nodakenetin 108 紫花前胡 3,4,8-Trimethoxyphenanthrene-2,
5-Diol103 3,4,8-三甲氧基菲-2,5-二醇 Moscatilin 102 杓唇石斛素 Evodiamine 100 吴茱萸碱 Nootkatone 71 圆柚酮 表 3 分子对接结合能(单位:Kcal/mol)
Table 3. Binding energy of molecular docking
靶点名称 齿叶黄皮素 吴茱萸次碱 紫花前胡 吴茱萸碱 AKT1 −5.12 −5.22 −5.56 −5.97 STAT3 −5.01 −4.77 −4.94 −4.94 NOS3 −5.06 −4.42 −4.37 −4.85 GSK3B −5.13 −5.04 −5.46 −5.38 -
[1] 权雅文,李刚. 衰老与免疫的研究进展[J]. 中国临床保健杂志,2022,25(4):455-459. doi: 10.3969/J.issn.1672-6790.2022.04.005 [2] Fulop T,Dupuis G,Baehl S,et al. From inflamm-aging to immune-paralysis: A slippery slope during aging for immune-adaptation[J]. Biogerontology,2016,17(1):147-157. doi: 10.1007/s10522-015-9615-7 [3] Fülöpa T,Larbib A,Witkowskid J. Human inflammaging[J]. Gerontology,2019,65(5):495-504. doi: 10.1159/000497375 [4] 杨巍,路遥平,王放. 免疫衰老—人类疾病的助推器[J]. 国际老年医学杂志,2023,44(2):129-134. [5] Franceschi C,Bonafè M,Valensin S,et al. Inflamm-aging. An evolutionary perspective on immunosenescence[J]. Annals of the New York Academy of Sciences,2000,908(1):244-254. doi: 10.1111/j.1749-6632.2000.tb06651.x [6] 张伟洁,郑宏. IL-6介导免疫炎性反应作用及其与疾病关系的研究进展[J]. 细胞与分子免疫学杂志,2017,33(5):699-703. doi: 10.13423/j.cnki.cjcmi.008148 [7] 孔婧,周秉舵,汤瑾,等. 清下化瘀方联合西医常规疗法对中重度急性胰腺炎患者内毒素、PCT、IL-6、IL-10的影响[J]. 现代中医药,2023,43(5):63-68. doi: 10.13424/j.cnki.mtcm.2023.05.013 [8] Klimushina M V,Gumanova N G,Kutsenko V A,et al. Association of common polymorphisms in IL-6 and IL6ST genes with levels of inflammatory markers and coronary stenosis[J]. Meta Gene,2019,21(3):100593-100593. [9] Wang Z,Wang J,Geriatrics D O,et al. Advances in the relationship between aging and aging-related diseases[J]. International Journal of Geriatrics,2019,40(3):191-192. [10] 于春月,李依聪,苏泽琦,等. 慢痞消对慢性萎缩性胃炎大鼠血清炎症指标IL-1β、IL-6和TNF-α表达水平的影响[J]. 中华中医杂志,2019,34(5):1979-1983. [11] Hunter C A,Jones S A. IL-6 as a keystone cytokine in health and disease[J]. Nature immunology,2015,16(5):448-457. doi: 10.1038/ni.3153 [12] 何建英,陈香美,刘航,等. 血清脱氢表雄酮和白细胞介素-6在健康人衰老过程中的改变[J]. 中国老年学杂志,2004,24(3):195-197. doi: 10.3969/j.issn.1005-9202.2004.03.002 [13] Fiorentino D F,Zlotnik A,Mosmann T R,et al. IL-10 inhibits cytokine production by activated macrophages[J]. The Journal of Immunology,1992,147(11):3815-3822. [14] 童乐,李梅,唐小涵,等. 白细胞介素-10在维持肠道稳态中的作用研究进展[J]. 中国细胞生物学学报,2023,45(9):1409-1418. [15] Williams A E,José,Ricardo J,et al. Enhanced inflammation in aged mice following infection with streptococcus pneumoniae is associated with decreased IL-10 and augmented chemokine production[J]. Ajp Lung Cellular & Molecular Physiology,2015,308(6):L539-L549. [16] 谢苗苗,肖柳,杨磊,等. 金钗石斛多糖的分离纯化及其抗衰老活性研究[J]. 中国现代中药,2018,20(12):1489-1493. doi: 10.13313/j.issn.1673-4890.20180622003 [17] Zhang X Q,Zhao T M,Liu J,et al. Advances in chemical compounds and pharmacological effects of dendrobii caulis[J]. Chinese Traditional and Herbal Drugs,2018,49(13):3174-3182. [18] 马贤炳,何祥林,何家轩,等. 霍山石斛栽培技术及活性成分药理学研究进展[J]. 现代农业科技,2023,847(17):67-71,79. [19] 梁颖敏. 铁皮石斛对雌性衰老小鼠的抗衰老作用及其机理研究[D]. 广州: 广州中医药大学, 2011. [20] 吴蓓丽,吴月国,赵铮蓉,等. 铁皮石斛免疫调节作用及相关活性成分多糖的研究进展[J]. 中草药,2019,50(21):5373-5379. [21] Zeng Q,Ko C H,Siu W S,et al. Inhibitory effect of different cendrobium species on LPS-induced inflammation in macrophages via suppression of MAPK pathways[J]. Chinese Journal of Natural Medicines,2018,16(7):481-489. doi: 10.1016/S1875-5364(18)30083-9 [22] 任晓丽,皇甫和平,王军,等. 黄曲霉毒素B1激活核转录因子-κB信号通路引起牛乳腺上皮细胞发生炎性反应[J]. 动物营养学报,2023,35(7):4587-4595. doi: 10.12418/CJAN2023.426 [23] 杨涵,闫永煌,朱佩轩,等. 柴蜕颗粒通过MAPK/Akt/NF-κB信号通路改善气道炎症治疗咳嗽变异性哮喘的药效及机制研究[J]. 环球中医药,2023,16(9):1735-1742. [24] 赵青婷. ISOC1通过AKT1/PEX11B/过氧化物酶体途径调节巨噬细胞的炎症反应[D]. 重庆: 重庆大学, 2022. [25] 吴茸,王栋,王晶敏,等. 苦参碱调节IL-6/STAT3/NF-κB信号通路对炎症性肠病大鼠Th17/Treg平衡的影响[J]. 西安交通大学学报(医学版),2023,44(5):809-816. [26] Wang Y,Wang K,Fu J. HDAC6 mediates poly(I: C)-induced TBK1 and akt phosphorylation in macrophages[J]. Frontiers in lmmunology,2020,11(8):1776. [27] 尚磊晶,孙盈盈,李元海. 吲哚美辛通过NOS3影响线粒体呼吸链对非小细胞肺癌的机制[J]. 中国药理学通报,2022,38(12):1846-1852. [28] Lin Y Q,Chen Y L,Zeng J Y,et al. Nodakenetin alleviates inflammatory pain hypersensitivity by suppressing NF-κB signal pathway[J]. Neuroimmunomodulation,2022,29(4):486-492. doi: 10.1159/000525690 [29] 梁靖蓉,麦凤怡,李陈广,等. 吴茱萸碱的药理学研究进展[J]. 中国药理学通报,2022,38(10):1457-1461. doi: 10.12360/CPB202201066 [30] 顿耿,祁相焕,吴德福,等. 基于IL-4/STAT6通路研究吴茱萸次碱对特应性皮炎模型小鼠的改善作用[J]. 中医学报,2022,37(12):2643-2648. [31] 廖敏,李璇,张樑君,等. 青蒿琥酯对结合型胆汁酸诱导小鼠原代肝细胞IL-6产生的机制研究[J]. 第三军医大学学报,2021,43(12):1133-1139. doi: 10.16016/j.1000-5404.202012225 [32] Stettner N,Rosen C,Bernshtein B,et al. Induction of nitric-oxide metabolism in enterocytes alleviates colitis and inflammation-associated colon cancer[J]. Biotechnology for Biofuels,2018,11(1):1962-1976. [33] 杨哲. 吴茱萸碱调控IL-6/STAT-3信号通路抑制炎症相关性结直肠癌的机制研究[D]. 南京: 南京中医药大学, 2021.