留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HSV1感染中的表观遗传调控机制研究进展

吴长静 邹雨芳 黄新伟

吴长静, 邹雨芳, 黄新伟. HSV1感染中的表观遗传调控机制研究进展[J]. 昆明医科大学学报, 2024, 45(1): 172-178. doi: 10.12259/j.issn.2095-610X.S20240129
引用本文: 吴长静, 邹雨芳, 黄新伟. HSV1感染中的表观遗传调控机制研究进展[J]. 昆明医科大学学报, 2024, 45(1): 172-178. doi: 10.12259/j.issn.2095-610X.S20240129
Changjing WU, Yufang ZOU, Xinwei HUANG. Advances in Epigenetic Regulatory Mechanisms in HSV1 Infection[J]. Journal of Kunming Medical University, 2024, 45(1): 172-178. doi: 10.12259/j.issn.2095-610X.S20240129
Citation: Changjing WU, Yufang ZOU, Xinwei HUANG. Advances in Epigenetic Regulatory Mechanisms in HSV1 Infection[J]. Journal of Kunming Medical University, 2024, 45(1): 172-178. doi: 10.12259/j.issn.2095-610X.S20240129

HSV1感染中的表观遗传调控机制研究进展

doi: 10.12259/j.issn.2095-610X.S20240129
基金项目: 国家自然科学基金资助项目(82260486)
详细信息
    作者简介:

    吴长静(1999~),女,山东德州人,在读硕士研究生,主要从事病毒感染机制研究工作

    通讯作者:

    黄新伟,E-mail:532768282@qq.com

  • 中图分类号: R392.9

Advances in Epigenetic Regulatory Mechanisms in HSV1 Infection

  • 摘要: 1型单纯疱疹病毒(HSV1)是一类最为常见的人类传染病原体,感染后可导致一系列程度不同的疾病。HSV1在中枢神经系统的潜伏感染及偶发重激活是其病理发生的关键,也为抗病毒治疗带来了巨大的挑战。目前,关于HSV1感染的建立、维持和重激活的机制并未完全阐明,但普遍认为表观遗传调控可能在其中扮演重要作用。越来越多研究表明,病毒裂解期和潜伏感染期的基因组呈现不同的染色质结构,其富含的多种翻译后修饰组蛋白赋予病毒基因转录激活或抑制特征。此外,病毒潜伏相关转录本LATs也可能参与基因组表观遗传修饰调控。
  • 图  1  HSV1基因的级联表达和表观修饰

    VP16:病毒蛋白16;IE:即早期基因;E:早期基因;L:晚期基因UL:基因组长片段区;US:基因组短片段区;RL:长片段重复区;RS:短片段重复区;图片来源于Figdraw[2]

    Figure  1.  Cascade expression and epigenetic modification of HSV1 gene

    图  2  LAT上CTCF结合位点和LAT的表观调控

    CTCF结合位点,包括CTRL1,CTRL2,CTa’ m,CTRS1,CTRS2,CTRS3与CTUS1[42]

    Figure  2.  CTCF binding sites and epigenetic regulation of LAT on LAT

  • [1] Arduino P G,Porter S R. Herpes simplex virus type 1 infection: Overview on relevant clinico-pathological features[J]. Journal of Oral Pathology & Medicine:Official Publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology,2008,37(2):107-121.
    [2] Schang L M,Hu M,Cortes E F,et al. Chromatin-mediated epigenetic regulation of HSV-1 transcription as a potential target in antiviral therapy[J]. Antiviral Research,2021,192(1):105103-105139.
    [3] Steiner I,Benninger F. Update on herpes virus infections of the nervous system[J]. Current Neurology and Neuroscience Reports,2013,13(12):414-421. doi: 10.1007/s11910-013-0414-8
    [4] Lehman I R,Boehmer P E. Replication of herpes simplex virus DNA[J]. The Journal of Biological Chemistry,1999,274(40):28059-28062. doi: 10.1074/jbc.274.40.28059
    [5] Knipe D M,Cliffe A. Chromatin control of herpes simplex virus lytic and latent infection[J]. Nature Reviews Microbiology,2008,6(3):211-221. doi: 10.1038/nrmicro1794
    [6] Zhu S,Viejo-Borbolla A. Pathogenesis and virulence of herpes simplex virus[J]. Virulence,2021,12(1):2670-2702. doi: 10.1080/21505594.2021.1982373
    [7] Cliffe A R,Garber D A,Knipe D M. Transcription of the herpes simplex virus latency-associated transcript promotes the formation of facultative heterochromatin on lytic promoters[J]. J Virol,2009,83(16):8182-8190. doi: 10.1128/JVI.00712-09
    [8] Stevens J G,Wagner E K,Devi-rao G B,et al. RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons[J]. Science (New York,NY),1987,235(4792):1056-1059.
    [9] Zwaagstra J C,Ghiasi H,Slanina S M,et al. Activity of herpes simplex virus type 1 latency-associated transcript (LAT) promoter in neuron-derived cells: Evidence for neuron specificity and for a large LAT transcript[J]. J Virol,1990,64(10):5019-5028. doi: 10.1128/jvi.64.10.5019-5028.1990
    [10] Farrell M J,Dobson A T,Feldman L T. Herpes simplex virus latency-associated transcript is a stable intron[J]. Proceedings of the National Academy of Sciences of the United States of America,1991,88(3):790-794.
    [11] Pan D,Flores O,Umbach J L,et al. A neuron-specific host microRNA targets herpes simplex virus-1 ICP0 expression and promotes latency[J]. Cell Host & Microbe,2014,15(4):446-456.
    [12] Umbach J L,Nagel M A,Cohrs R J,et al. Analysis of human alphaherpesvirus microRNA expression in latently infected human trigeminal ganglia[J]. J Virol,2009,83(20):10677-10683. doi: 10.1128/JVI.01185-09
    [13] Umbach J L,Kramer M F,Jurak I,et al. MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs[J]. Nature,2008,454(7205):780-783. doi: 10.1038/nature07103
    [14] Jiang X,Brown D,Osorio N,et al. Increased neurovirulence and reactivation of the herpes simplex virus type 1 latency-associated transcript (LAT)-negative mutant dLAT2903 with a disrupted LAT miR-H2[J]. Journal of Neurovirology,2016,22(1):38-49. doi: 10.1007/s13365-015-0362-y
    [15] Perng G C,Jones C,Ciacci-Zanella J,et al. Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript[J]. Science (New York,NY),2000,287(5457):1500-1503.
    [16] Javier R T,Stevens J G,Dissette V B,et al. A herpes simplex virus transcript abundant in latently infected neurons is dispensable for establishment of the latent state[J]. Virology,1988,166(1):254-257. doi: 10.1016/0042-6822(88)90169-9
    [17] Leib D A,Bogard C L,Kosz-Vnenchak M,et al. A deletion mutant of the latency-associated transcript of herpes simplex virus type 1 reactivates from the latent state with reduced frequency[J]. J Virol,1989,63(7):2893-2900. doi: 10.1128/jvi.63.7.2893-2900.1989
    [18] Vanni E A H,Foley J W,Davison A J,et al. The latency-associated transcript locus of herpes simplex virus 1 is a virulence determinant in human skin[J]. PLoS Pathog,2020,16(12):e1009166-e1009196. doi: 10.1371/journal.ppat.1009166
    [19] Moore L D,Le T,Fan G. DNA methylation and its basic function[J]. Neuropsychopharmacology:Official Publication of the American College of Neuropsychopharmacology,2013,38(1):23-38. doi: 10.1038/npp.2012.112
    [20] Kouzarides T. Chromatin modifications and their function[J]. Cell,2007,128(4):693-705. doi: 10.1016/j.cell.2007.02.005
    [21] Leinbach S S, Summers W C. The structure of herpes simplex virus type 1 DNA as probed by micrococcal nuclease digestion [J]. The Journal of General Virology, 1980, 51(Pt 1): 45-59.
    [22] Deshmane S L,Fraser N W. During latency,herpes simplex virus type 1 DNA is associated with nucleosomes in a chromatin structure[J]. J Virol,1989,63(2):943-947. doi: 10.1128/jvi.63.2.943-947.1989
    [23] Muggeridge M I,Fraser N W. Chromosomal organization of the herpes simplex virus genome during acute infection of the mouse central nervous system[J]. J Virol,1986,59(3):764-767. doi: 10.1128/jvi.59.3.764-767.1986
    [24] Huang J,Kent J R,Placek B,et al. Trimethylation of histone H3 lysine 4 by set1 in the lytic infection of human herpes simplex virus 1[J]. J Virol,2006,80(12):5740-5746. doi: 10.1128/JVI.00169-06
    [25] Kent J R,Zeng P Y,Atanasiu D,et al. During lytic infection herpes simplex virus type 1 is associated with histones bearing modifications that correlate with active transcription[J]. J Virol,2004,78(18):10178-10186. doi: 10.1128/JVI.78.18.10178-10186.2004
    [26] Paulus C,Nitzszhe A,Nevels M. Chromatinisation of herpesvirus genomes[J]. Reviews in Medical Virology,2010,20(1):34-50. doi: 10.1002/rmv.632
    [27] Lee J S,Raja P,Knipe D M. Herpesviral ICP0 protein promotes wwo waves of heterochromatin removal on an early viral promoter during lytic infection[J]. mBio,2016,7(1):e02007-e02015.
    [28] Gao C,Chen L,Tang S B,et al. The epigenetic landscapes of histone modifications on HSV-1 genome in human THP-1 cells[J]. Antiviral Research,2020,176(1):104730-104741. doi: 10.1016/j.antiviral.2020.104730
    [29] Kubat N J,Tran R K,Mcanany P,et al. Specific histone tail modification and not DNA methylation is a determinant of herpes simplex virus type 1 latent gene expression[J]. J Virol,2004,78(3):1139-1149. doi: 10.1128/JVI.78.3.1139-1149.2004
    [30] Oh J,Fraser N W. Temporal association of the herpes simplex virus genome with histone proteins during a lytic infection[J]. J Virol,2008,82(7):3530-3537. doi: 10.1128/JVI.00586-07
    [31] Gross S,Catez F,Masumoto H,et al. Centromere architecture breakdown induced by the viral E3 ubiquitin ligase ICP0 protein of herpes simplex virus type 1[J]. PloS One,2012,7(9):e44227-e44240. doi: 10.1371/journal.pone.0044227
    [32] Wagner L M,Deluca N A. Temporal association of herpes simplex virus ICP4 with cellular complexes functioning at multiple steps in PolII transcription[J]. PloS One,2013,8(10):e78242-e78254. doi: 10.1371/journal.pone.0078242
    [33] Herrera F J,Triezenberg S J. VP16-dependent association of chromatin-modifying coactivators and underrepresentation of histones at immediate-early gene promoters during herpes simplex virus infection[J]. J Virol,2004,78(18):9689-9696. doi: 10.1128/JVI.78.18.9689-9696.2004
    [34] Cliffe A R,Knipe D M. Herpes simplex virus ICP0 promotes both histone removal and acetylation on viral DNA during lytic infection[J]. J Virol,2008,82(24):12030-12038. doi: 10.1128/JVI.01575-08
    [35] Arbuckle J H,Vogel J L,Efstathiou S,et al. Deletion of the transcriptional coactivator HCF-1 in vivo impairs the removal of repressive heterochromatin from latent HSV genomes and suppresses the initiation of viral reactivation[J]. mBio,2023,14(1):e0354222-e0354238. doi: 10.1128/mbio.03542-22
    [36] Bloom D C,Giordani N V,Kwiakkowski D L. Epigenetic regulation of latent HSV-1 gene expression[J]. Biochim Biophys Acta,2010,1799(3-4):246-256. doi: 10.1016/j.bbagrm.2009.12.001
    [37] Neumann D M,Bhattacharjee P S,GIORDANI N V,et al. In vivo changes in the patterns of chromatin structure associated with the latent herpes simplex virus type 1 genome in mouse trigeminal ganglia can be detected at early times after butyrate treatment[J]. J Virol,2007,81(23):13248-13253. doi: 10.1128/JVI.01569-07
    [38] Amelio A L,Giordani N V,Kubat N J,et al. Deacetylation of the herpes simplex virus type 1 latency-associated transcript (LAT) enhancer and a decrease in LAT abundance precede an increase in ICP0 transcriptional permissiveness at early times postexplant[J]. J Virol,2006,80(4):2063-2068. doi: 10.1128/JVI.80.4.2063-2068.2006
    [39] Kubat N J,Amelio A L,Giordani N V,et al. The herpes simplex virus type 1 latency-associated transcript (LAT) enhancer/rcr is hyperacetylated during latency independently of LAT transcription[J]. J Virol,2004,78(22):12508-12518. doi: 10.1128/JVI.78.22.12508-12518.2004
    [40] Kwiatkowski D L,Thompson H W,Bloom D C. The polycomb group protein Bmi1 binds to the herpes simplex virus 1 latent genome and maintains repressive histone marks during latency[J]. J Virol,2009,83(16):8173-8181. doi: 10.1128/JVI.00686-09
    [41] Wang Q Y,Zhou C,Johnson K E,et al. Herpesviral latency-associated transcript gene promotes assembly of heterochromatin on viral lytic-gene promoters in latent infection[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(44):16055-16059.
    [42] Amelio A L,Mcanany P K,Bloom D C. A chromatin insulator-like element in the herpes simplex virus type 1 latency-associated transcript region binds CCCTC-binding factor and displays enhancer-blocking and silencing activities[J]. J Virol,2006,80(5):2358-2368. doi: 10.1128/JVI.80.5.2358-2368.2006
    [43] Lang F,Li X,Vladimirova O,et al. CTCF interacts with the lytic HSV-1 genome to promote viral transcription[J]. Scientific Reports,2017,7(1):39861-39876. doi: 10.1038/srep39861
    [44] Washington S D,Musarrat F,ERTEL M K,et al. CTCF binding sites in the herpes simplex virus 1 genome display site-specific CTCF occupation,protein recruitment,and insulator function[J]. J Virol,2018,92(8):e00156-e00171.
    [45] Washington S D,Singh P,Johns R N,et al. The CCCTC binding factor,CTRL2,modulates heterochromatin deposition and the establishment of herpes shimplex virus 1 latency in vivo[J]. J Virol,2019,93(13):e00415-e00419.
    [46] Bedadala G R,Pinnoji R C,Palem J R,et al. Thyroid hormone controls the gene expression of HSV-1 LAT and ICP0 in neuronal cells[J]. Cell Res,2010,20(5):587-598. doi: 10.1038/cr.2010.50
    [47] Grams T R,Edwards T G,Bloom D C. HSV-1 LAT promoter deletion viruses exhibit strain-specific and LAT-dependent epigenetic regulation of latent viral genomes in human neurons[J]. J Virol,2023,97(2):e01935-e01951.
  • [1] 徐苏, 刘宇晴, 郑兴旺.  血清抗-HBC、CHE、载脂蛋白AI的水平与病毒性肝炎发展的相关性, 昆明医科大学学报.
    [2] 廉阳秧, 岳红萍, 端娅, 胡红文, 罗芳.  miRNA-15a/16调控Bmi-1蛋白在卵巢癌顺铂化疗耐药中的作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231204
    [3] 何花, 范晶华, 张燕玲, 李杨, 李海雯, 武彦.  免疫低下人群感染水痘-带状疱疹病毒38例的临床特征, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220820
    [4] 李欢, 徐秋月, 王云娟, 苏洋, 唐睿珠.  利用逆转录环介导恒温扩增技术建立新型冠状病毒核酸快速检测方法, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210904
    [5] 姚利璇, 牛奔, 岳伟, 周文林, 张雅婷.  丙型肝炎病毒感染和2型糖尿病的相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210815
    [6] 吴婕, 刘珺, 张燕, 任莉, 党彦丽.  组蛋白和TLRs在静脉血栓栓塞性疾病中的作用机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210530
    [7] 王福科, 张红, 杨桂然, 肖渝, 何川, 宋恩, 李彦林.  携载增强型绿色荧光蛋白基因慢病毒转染骨髓间充质干细胞示踪方法, 昆明医科大学学报.
    [8] 张沛, 邢群智, 李毓, 韩学昌, 董旭, 常俊晓.  电针镇痛治疗带状疱疹后神经痛的临床疗效, 昆明医科大学学报.
    [9] 李建娇, 代晓明.  组蛋白去乙酰化酶2在人舌鳞状细胞癌中的表达, 昆明医科大学学报.
    [10] 胡滔, 洪颖, 陈红兰, 常业飞, 姜水, 习杨彦彬, 檀雅欣, 李珊, 刘光彩, 吴晓虹.  miR-1对HR HPV 16~+/18~+宫颈癌细胞周期相关蛋白的调控, 昆明医科大学学报.
    [11] 张细丽, 孟汶, 李倩烨, 王国梁, 李彦林, 张小梅.  神经阻滞预防带状疱疹后神经痛及其高危因素分析, 昆明医科大学学报.
    [12] 范敏娟, 钟云华, 沈雯, 袁开芬, 赵国厚, 王蜀昆, 温林俏.  肺癌中热休克转录因子2促进热休克蛋白的表达, 昆明医科大学学报.
    [13] 戈佳云.  慢病毒介导的FHIT基因过表达调控人肝癌细胞株生长实验研究, 昆明医科大学学报.
    [14] 赵丽娟.  表观遗传学在法医学中的应用研究进展, 昆明医科大学学报.
    [15] 芮丹云.  辛伐他汀对体外培养鼠骨形成蛋白BMP-2基因的调控, 昆明医科大学学报.
    [16] 边海霞.  单纯疱疹病毒性角膜炎抗氧化治疗的临床观察, 昆明医科大学学报.
    [17] 何颖红.  IRF4逆转录病毒表达载体的构建及鉴定, 昆明医科大学学报.
    [18] 抗反转录病毒治疗HIV/AIDS初治患者232例结果分析, 昆明医科大学学报.
    [19] 张红芸.  大鼠卵巢蒂扭转后颗粒细胞凋亡及相关蛋白表达, 昆明医科大学学报.
    [20] 宋鑫.  在鼻咽癌细胞中EB病毒LMP1调控G1/S 检测点重要相关蛋白的转录, 昆明医科大学学报.
  • 加载中
图(2)
计量
  • 文章访问数:  1439
  • HTML全文浏览量:  1120
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-01
  • 网络出版日期:  2023-12-21
  • 刊出日期:  2024-01-25

目录

    /

    返回文章
    返回