留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

靶向抗HSV-1的siRNA研究进展

周磊 吕雯雯 段永忠 钱雯 程继帅

周磊, 吕雯雯, 段永忠, 钱雯, 程继帅. 靶向抗HSV-1的siRNA研究进展[J]. 昆明医科大学学报, 2024, 45(9): 1-8. doi: 10.12259/j.issn.2095-610X.S20240901
引用本文: 周磊, 吕雯雯, 段永忠, 钱雯, 程继帅. 靶向抗HSV-1的siRNA研究进展[J]. 昆明医科大学学报, 2024, 45(9): 1-8. doi: 10.12259/j.issn.2095-610X.S20240901
Lei ZHOU, Wenwen LYU, Yongzhong DUAN, Wen QIAN, Jishuai CHENG. Research Progress of siRNA Targeting Against HSV-1[J]. Journal of Kunming Medical University, 2024, 45(9): 1-8. doi: 10.12259/j.issn.2095-610X.S20240901
Citation: Lei ZHOU, Wenwen LYU, Yongzhong DUAN, Wen QIAN, Jishuai CHENG. Research Progress of siRNA Targeting Against HSV-1[J]. Journal of Kunming Medical University, 2024, 45(9): 1-8. doi: 10.12259/j.issn.2095-610X.S20240901

靶向抗HSV-1的siRNA研究进展

doi: 10.12259/j.issn.2095-610X.S20240901
基金项目: 国家自然科学基金资助项目(82360393);云南省产业技术创新人才计划项目(YNWR-CYJS-2018-049);云南省教育厅科研基金资助项目(2020J0152)
详细信息
    作者简介:

    周磊(2000~),男,云南昆明人,在读硕士研究生,主要从事分子生物学、免疫学等研究工作

    通讯作者:

    钱雯,E-mail:yfzxqw@walvax.com

    程继帅,E-mail:chengjishuai@kmmu.edu.cn

  • 中图分类号: R392.9

Research Progress of siRNA Targeting Against HSV-1

More Information
    Corresponding author: 钱雯,北京协和医学院免疫学博士,研究员。就职于云南沃森生物技术股份有限公司,先后从事疫苗的研发、生产和质量控制及管理工作20余年。主要研究方向为疫苗技术开发及质量控制。作为主研人员完成了b型流感嗜血杆菌结合疫苗、流脑等疫苗品种的关键技术的突破、产业化研究和现场质量体系的建立。涉及品种已上市销售,先后获得云南省科技进步二等奖3项,三等奖1项。昆明市科技进步二等奖1项,三等奖1项。承担国家认定企业技术中心、云南省疫苗工程技术研究中心、云南省生物技术药物工程研究中心等多项资质平台创新能力建设工作。为生物结合疫苗研发省创新团队核心成员。昆明市创新团队带头人,入选云南省产业技术领军人才、云南省科技创新人才、昆明市有突出贡献优秀专业技术人员、获得PMI-PMP、ACP项目管理专业人士认证、MATRIZ L3国际创新认证。国家三级创新工程师及一级创新培训师。申请发明专利7项,授权5项,其中第一发明人3项。第一作者或通讯作者发表中文核心期刊文章11篇,SCI文章1篇。
  • 摘要: 单纯疱疹病毒1型(herpes simplex virus type 1,HSV-1)是一种能够在各类人群中携带和传播并能引起包括口唇疱疹、荚膜炎、角膜炎和病毒性脑炎等疾病的重要病原体。虽然已有多种类型的HSV-1疫苗处于研发的不同阶段,但仍没有商业化的疫苗上市销售。临床上使用的特异性抗HSV-1药物如阿昔洛韦、伐昔洛韦和喷昔洛韦等也面临严重的抗药性威胁,开发新的特异性抗HSV-1药物是当前所面临的主要任务之一。siRNA是一种长度为20~25 核苷酸的双链RNA,通过在转录后水平上沉默基因表达发挥干扰作用。siRNA作为一种新的、有潜力的抗病毒药物备受关注,发展也较为迅速。综述近年来siRNA在抗HSV-1方面的研究进展,包括靶向HSV-1关键基因和HSV-1互作的宿主细胞基因的siRNA设计、递送和靶向策略。
  • 图  1  siRNA作用机制示意图

    Figure  1.  Schematic diagram of siRNA mechanism of action

    表  1  靶向HSV-1编码基因的siRNA

    Table  1.   Summary of siRNAs targeting HSV-1-encoded genes

    靶基因 siRNA 正向 (5′-3′) 反向 (5′-3′) 干扰效率(%) 参考文献
    UL18 siUL18-1 GCACCGUUAACCUUCGCAATT UUGCGAAGGUUAACGGUGCTT 86.78 [25]
    siUL18-2 GUCCUUAACAUGGUUUACUTT AGUAAACCAUGUUAAGGACTT 60.00
    siUL18-3 CCAUCAUCCUUACGCUAAUTT AUUAGCGUAAGGAUGAUGGTT 87.25
    siUL18-4 CCCGUUAUACGCUAUCCCUAA AGGGAUAGCGUAUAACGGGGG 65.00
    UL19 siUL19-1 CCAGCGACGUACAGUUUAATT UUAAACUGUACGUCGCUGGCG 79.71
    siUL19-2 CUUUUGUGCCGAUGCATT UGCAUCGGCAACAACAAAGTT 81.52
    siUL19-3 CGACCGACGUCAACUACUUTT AAGUAGUUGACGUCGGUCGTT 81.52
    siUL19-4 CCAGCGACGUACAGUUUAATT UUAAACUGUACGUCGCUGGTT 78.86
    UL26 siUL26-1 CCGUUAACAACAUGAUGCUTT AGCAUCAUGUUGGUUAACGGCG 40.00
    siUL26-2 CCGAUUUGUUCGUCUCUCATT UGAGAGACGAACAAAUCGGCG 81.21
    siUL26-3 CUGUUGUACCUGAUCACCAAC UGGUGAUCAGGUACAACAGGC NC
    siUL26-4 CCGUUAACAACAUGAUGCUGC AGCAUCAUGUUGGUUAACGGCG 10.00
    UL26.5 siUL26.5 CCGAUUUGUUCGUCUCUCAUU UUGGCUAAACAAGCAGAGAGU 52.12
    UL28 shRNAUL28 GATCCGCAGGTGCAGACCTATG
    TGTTTTCAAGAGAACACATAGG
    TCTGCACCTGCTTTTTTGGAAA
    NC DAY1 50.00 [29]
    DAY2 70.00
    DAY3 60.00
    DAY4 40.00
    UL29 shRNAUL29 GATCCGCAATCAATTCCAACCG
    GTGCTTCAAGAGAGCACCGGTT
    GGAATTGATTGCTTTTTTGGAAA
    NC DAY1 60.00
    DAY2 80.00
    DAY3 60.00
    DAY4 50.00
    UL30 siRNA-4 GGUACAACAUCAUCAACUUTT AAGUUGAUGAUGUUGUACCTT 6 h 60.00 [40]
    12 h 80.00
    UL35 siUL35-1 CACGCAAACAACACGUUUATT UAACGUGUUGUUGCGUGGG 50.00 [25]
    siUL35-2 GCCACCAAUAACUCUCAGUTT ACUGAGAGUUAUUGGUGGCCA 55.95
    siUL35-3 CUCUCAGUUUAUCAUGGAUTT AUCCAUGAUAAACUGAGAGTT 22.00
    siUL35-4 GUUUGUCGUCGAGAACCUTT AGGUUCUCGAACGACAAACGG 30.00
    UL38 siUL38-1 GGCCUAGUGUCGUUUAACUTT AGUUAAACGACACUAGGCCCG NC [25]
    siUL38-2 GGAUCACCAAACCGAUUCATT UGAAUCGUGUUGGUGAUCCCGG 10.00
    siUL38-3 GCGUUUCUGUACCUGGUAUTT AUACCAGGUACAGAAACGCCG 82.48
    siUL38-4 GUUGUGUGUACGUGAUCAATT UUGAUCACGUACACACAACAC NC
    UL39
     
     
    siRNA1 CUGCACCAUGAUCAUCGACdTdT GUCGAUGAUCAUGGUGCAGdTdT 29.63 [33]
    siRNA2 AUCGGCCCUGAAGUAUGAGdTdT CUCAUACUUCAGGGCCGAUUG 27.07
    siRNA3 GCGCUGCGACAAUAUCUUCdTdT GAAGAUAUUGUCGCAGCGCUG NC
    siRNA4 CCAUAGCCAAUCCAUGACCdTdT GGUCAUGGAUUGGCUAUGGUC NC
    UL40 siRNA-1 GACGACCUGGUUACGGAAAdTdT UUUCCGUAACCAGGUCGUCGG 2.73 [30]
    siRNA-2 AAUGCAUCGAAGUCGUACAdTdT UGUACGACUUCGAUGCAUUCC 69.83
    siRNA-3 UCACCUGCCAGUCAAACGAdTdT UCGUUUGACUGGCAGGUGACC 67.94
    siRNA-4 AAAUUGGUGUGUUUGUCGGUG AAAUUGGUGUGUUUGUCGGUG 81.31
    ICP4 siRNA GCAACAGCAGCUCCUUCAUdTdT dTdTCGUUGUCGUCGAGGAAGUA 12 h 69.00
    24 h 95.00
    VP16 siRNA-1 GGUACUUUAUGGUGUUGAUTT AUCAACACCAUAAAGUACCTT NC [3140]
    下载: 导出CSV

    表  2  靶向宿主基因与HSV-1相互作用的siRNA

    Table  2.   Summary of siRNA targeting host genes interacting with HSV-1

    靶基因 siRNA 正向(5′-3′) 参考文献
    INSM1 siINSM1 UCCGCAAGCUGCACUUCGATT [45]
    SNF2H
    siRNA5 GGAAUGGUAUACUCGGAUA [48]
    siRNA6 GGGCAAA UAGAUUCGAGUA
    siRNA7 GGAUUUACCAAUUGGAAUA
    siRNA8 GUUCUUUCCUCCACGUUUA
    REST siREST GUGAUACUGUAGAUUACAC [49]
    coREST sicoREST AAGAUUGUCCCGUUCUUGACU [59]
    TSG101 siTSG101 CCUCCAGUCUUCUCUCGUCTT [52]
    ALIX siALIX GCCGCUGGUGAAGUUCAUCTT
    下载: 导出CSV
  • [1] Looker K J,Magaret A S,May M T,et al. Global and regional estimates of prevalent and incident herpes simplex virus type 1 infections in 2012[J]. PLoS One,2015,10(10):e0140765. doi: 10.1371/journal.pone.0140765
    [2] James C,Harfouche M,Welton N J,et al. Herpes simplex virus: Global infection prevalence and incidence estimates,2016[J]. Bull World Health Organ,2020,98(5):315-329. doi: 10.2471/BLT.19.237149
    [3] Looker K J,Magaret A S,May M T,et al. First estimates of the global and regional incidence of neonatal herpes infection[J]. Lancet Glob Health,2017,5(3):e300-e309. doi: 10.1016/S2214-109X(16)30362-X
    [4] Xu F,Sternberg M R,Kottiri B J,et al. Trends in herpes simplex virus type 1 and type 2 seroprevalence in the United States[J]. Jama,2006,296(8):964-973. doi: 10.1001/jama.296.8.964
    [5] Navarro-Bielsa A,Gracia-Cazana T,Aldea-Manrique B,et al. COVID-19 infection and vaccines: Potential triggers of Herpesviridae reactivation[J]. An Bras Dermatol,2023,98(3):347-354. doi: 10.1016/j.abd.2022.09.004
    [6] Whitley RJRoizman B. Herpes simplex virus infections[J]. The Lancet,2001,357(9267):1513-1518. doi: 10.1016/S0140-6736(00)04638-9
    [7] Marcocci M E,Napoletani G,Protto V,et al. Herpes simplex virus-1 in the brain: The dark side of a sneaky infection[J]. Trends Microbiol,2020,28(10):808-820. doi: 10.1016/j.tim.2020.03.003
    [8] De Chiara G,Marcocci M E,Sgarbanti R,et al. Infectious agents and neurodegeneration[J]. Mol Neurobiol,2012,46(3):614-638. doi: 10.1007/s12035-012-8320-7
    [9] De Clercq E. A 40-year journey in search of selective antiviral chemotherapy[J]. Annual Review of Pharmacology and Toxicology,2011,51(1):1-24. doi: 10.1146/annurev-pharmtox-010510-100228
    [10] De Clercq E. Antivirals: Past,present and future[J]. Biochem Pharmacol,2013,85(6):727-744. doi: 10.1016/j.bcp.2012.12.011
    [11] Burrel S,Boutolleau D,Azar G,et al. Phenotypic and genotypic characterization of acyclovir-resistant corneal HSV-1 isolates from immunocompetent patients with recurrent herpetic keratitis[J]. J Clin Virol,2013,58(1):321-324. doi: 10.1016/j.jcv.2013.05.001
    [12] Sadowski L A,Upadhyay R,Greeley Z W,et al. Current drugs to treat infections with herpes simplex viruses-1 and -2[J]. Viruses,2021,13(7):1228. doi: 10.3390/v13071228
    [13] Preda M,Manolescu L S C,Chivu R D. Advances in alpha herpes viruses vaccines for human[J]. Vaccines (Basel),2023,11(6):1094. doi: 10.3390/vaccines11061094
    [14] Pushparaj P N,Aarthi J J,Manikandan J,et al. siRNA,miRNA,and shRNA: In vivo applications[J]. J Dent Res,2008,87(11):992-1003. doi: 10.1177/154405910808701109
    [15] Hu B,Zhong L,Weng Y,et al. Therapeutic siRNA: State of the art[J]. Signal Transduct Target Ther,2020,5(1):101. doi: 10.1038/s41392-020-0207-x
    [16] Tan F L,Yin J Q. RNAi,a new therapeutic strategy against viral infection[J]. Cell Res,2004,14(6):460-466. doi: 10.1038/sj.cr.7290248
    [17] Guo S,Kemphues K J. par-1,a gene required for establishing polarity in C. elegans embryos,encodes a putative Ser/Thr kinase that is asymmetrically distributed[J]. Cell,1995,81(4):611-620. doi: 10.1016/0092-8674(95)90082-9
    [18] Fire A,Xu S,Montgomery M K,et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature,1998,391(6669):806-811. doi: 10.1038/35888
    [19] Elbashir S M,Lendeckel W,Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs[J]. Genes Dev,2001,15(2):188-200. doi: 10.1101/gad.862301
    [20] Elbashir S M,Harborth J,Lendeckel W,et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells[J]. Nature,2001,411(6836):494-498. doi: 10.1038/35078107
    [21] Hammond S M,Bernstein E,Beach D,et al. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells[J]. Nature,2000,404(6775):293-296. doi: 10.1038/35005107
    [22] Saurabh S,Vidyarthi A S,Prasad D. RNA interference: concept to reality in crop improvement[J]. Planta,2014,239(3):543-564. doi: 10.1007/s00425-013-2019-5
    [23] Carthew R W,Sontheimer E J. Origins and mechanisms of miRNAs and siRNAs[J]. Cell,2009,136(4):642-655. doi: 10.1016/j.cell.2009.01.035
    [24] Griffiths S J,Haas J. siRNA screening for genes involved in HSV-1 replication[J]. Bio Protoc,2014,4(16):e1209.
    [25] Jin F,Li S,Zheng K,et al. Silencing herpes simplex virus type 1 capsid protein encoding genes by siRNA: A promising antiviral therapeutic approach[J]. PLoS One,2014,9(5):e96623. doi: 10.1371/journal.pone.0096623
    [26] Jbara-Agbaria D,Blondzik S,Burger-Kentischer A,et al. Liposomal siRNA formulations for the treatment of herpes simplex virus-1: In vitro characterization of physicochemical properties and activity,and in vivo biodistribution and toxicity studies[J]. Pharmaceutics,2022,14(3):633. doi: 10.3390/pharmaceutics14030633
    [27] Taylor T J,Knipe D M. Proteomics of herpes simplex virus replication compartments: association of cellular DNA replication,repair,recombination,and chromatin remodeling proteins with ICP8[J]. J Virol,2004,78(11):5856-5866. doi: 10.1128/JVI.78.11.5856-5866.2004
    [28] Bryant K F,Yan Z,Dreyfus D H,et al. Identification of a divalent metal cation binding site in herpes simplex virus 1 (HSV-1) ICP8 required for HSV replication[J]. J Virol,2012,86(12):6825-6834. doi: 10.1128/JVI.00374-12
    [29] Song B,Liu X,Wang Q,et al. Adenovirus-mediated shRNA interference against HSV-1 replication in vitro[J]. J Neurovirol,2016,22(6):799-807. doi: 10.1007/s13365-016-0453-4
    [30] Silva A P,Lopes J F,Paula V S. RNA interference inhibits herpes simplex virus type 1 isolated from saliva samples and mucocutaneous lesions[J]. Braz J Infect Dis,2014,18(4):441-444. doi: 10.1016/j.bjid.2014.01.011
    [31] Duan F,Ni S,Nie Y,et al. Small interfering RNA targeting for infected-cell polypeptide 4 inhibits herpes simplex virus type 1 replication in retinal pigment epithelial cells[J]. Clinical & Experimental Ophthalmology,2012,40(2):195-204.
    [32] Liu Y T,Song B,Wang Y L,et al. [SiRNA targeting ICP4 attenuates HSV-1 replication][J]. Bing Du Xue Bao,2010,26(3):163-169.
    [33] Zhe R,Mei-Ying Z,Kitazato K,et al. Effect of siRNA on HSV-1 plaque formation and relative expression levels of UL39 mRNA[J]. Arch Virol,2008,153(7):1401-1406. doi: 10.1007/s00705-008-0110-1
    [34] Ren Z,Li S,Wang Q L,et al. Effect of siRNAs on HSV-1 plaque formation and relative expression levels of RR mRNA[J]. Virol Sin,2011,26(1):40-46. doi: 10.1007/s12250-011-3162-9
    [35] Heming J D,Conway J F,Homa F L. Herpesvirus capsid assembly and DNA packaging[J]. Adv Anat Embryol Cell Biol,2017,223:119-142.
    [36] Paavilainen H,Lehtinen J,Romanovskaya A,et al. Inhibition of clinical pathogenic herpes simplex virus 1 strains with enzymatically created siRNA pools[J]. J Med Virol,2016,88(12):2196-2205. doi: 10.1002/jmv.24578
    [37] Paavilainen H,Lehtinen J,Romanovskaya A,et al. Topical treatment of herpes simplex virus infection with enzymatically created siRNA swarm[J]. Antivir Ther,2017,22(7):631-637. doi: 10.3851/IMP3153
    [38] Kalke K,Lehtinen J,Gnjatovic J,et al. Herpes simplex virus type 1 clinical isolates respond to UL29-targeted siRNA swarm treatment independent of their acyclovir sensitivity[J]. Viruses,2020,12(12):1434. doi: 10.3390/v12121434
    [39] Levanova A A,Kalke K M,Lund L M,et al. Enzymatically synthesized 2'-fluoro-modified Dicer-substrate siRNA swarms against herpes simplex virus demonstrate enhanced antiviral efficacy and low cytotoxicity[J]. Antiviral Res,2020,182:104916. doi: 10.1016/j.antiviral.2020.104916
    [40] Zhang Y Q,Lai W,Li H,et al. Inhibition of herpes simplex virus type 1 by small interfering RNA[J]. Clin Exp Dermatol,2008,33(1):56-61.
    [41] Zhu Q C,Ren Z,Zhang C L,et al. Silencing HSV1 gD expression in cultured cells by RNA interference[J]. Bing Du Xue Bao,2007,23(1):22-27.
    [42] Bhuyan P K,Kariko K,Capodici J,et al. Short interfering RNA-mediated inhibition of herpes simplex virus type 1 gene expression and function during infection of human keratinocytes[J]. J Virol,2004,78(19):10276-10281. doi: 10.1128/JVI.78.19.10276-10281.2004
    [43] 吴长静,邹雨芳,黄新伟. HSV1感染中的表观遗传调控机制研究进展[J]. 昆明医科大学学报,2024,45(1):172-178. doi: 10.12259/j.issn.2095-610X.S20240129
    [44] Liang Y,Vogel J L,Narayanan A,et al. Inhibition of the histone demethylase LSD1 blocks alpha-herpesvirus lytic replication and reactivation from latency[J]. Nat Med,2009,15(11):1312-1317. doi: 10.1038/nm.2051
    [45] Kamakura M,Goshima F,Luo C,et al. Herpes simplex virus induces the marked up-regulation of the zinc finger transcriptional factor INSM1,which modulates the expression and localization of the immediate early protein ICP0[J]. Virol J,2011,8:257. doi: 10.1186/1743-422X-8-257
    [46] Olivo J F,Guille F,Lobel B. Microscopic hematuria. Semiologic value in urology. Management of microscopic hematuria[J]. J Urol (Paris),1989,95(8):453-458.
    [47] Sanders I,Boyer MF,Fraser N W. Early nucleosome deposition on,and replication of,HSV DNA requires cell factor PCNA[J]. J Neurovirol,2015,21(4):358-369. doi: 10.1007/s13365-015-0321-7
    [48] Bryant K F,Colgrove R C,Knipe D M. Cellular SNF2H chromatin-remodeling factor promotes herpes simplex virus 1 immediate-early gene expression and replication[J]. MBio,2011,2(1):e00330-10.
    [49] Zhou G,Te D,Roizman B. The CoREST/REST repressor is both necessary and inimical for expression of herpes simplex virus genes[J]. mBio,2010,2(1):e00313-10.
    [50] Mccullough J,Colf LA,Sundquist W I. Membrane fission reactions of the mammalian ESCRT pathway[J]. Annu Rev Biochem,2013,82:663-692. doi: 10.1146/annurev-biochem-072909-101058
    [51] Pawliczek T,Crump C M. Herpes simplex virus type 1 production requires a functional ESCRT-III complex but is independent of TSG101 and ALIX expression[J]. J Virol,2009,83(21):11254-11264. doi: 10.1128/JVI.00574-09
    [52] Barnes J,Wilson D W. The ESCRT-II subunit EAP20/VPS25 and the bro1 domain proteins HD-PTP and BROX are individually dispensable for herpes simplex virus 1 replication[J]. J Virol,2020,94(4):e01641-19.
    [53] Russell T,Samolej J,Hollinshead M,et al. Novel role for ESCRT-III component CHMP4C in the integrity of the endocytic network utilized for herpes simplex virus envelopment[J]. mBio,2021,12(3):e02183-20.
    [54] Huber M T,Wisner T W,Hegde N R,et al. Herpes simplex virus with highly reduced gD levels can efficiently enter and spread between human keratinocytes[J]. J Virol,2001,75(21):10309-10318. doi: 10.1128/JVI.75.21.10309-10318.2001
    [55] Petermann P,Thier K,Rahn E,et al. Entry mechanisms of herpes simplex virus 1 into murine epidermis: Involvement of nectin-1 and herpesvirus entry mediator as cellular receptors[J]. J Virol,2015,89(1):262-274. doi: 10.1128/JVI.02917-14
    [56] Sayers C L,Elliott G. Herpes simplex virus 1 enters human keratinocytes by a nectin-1-dependent,rapid plasma membrane fusion pathway that functions at low temperature[J]. J Virol,2016,90(22):10379-10389. doi: 10.1128/JVI.01582-16
    [57] Tiwari V,Oh M J,Kovacs M,et al. Role for nectin-1 in herpes simplex virus 1 entry and spread in human retinal pigment epithelial cells[J]. FEBS J,2008,275(21):5272-5285. doi: 10.1111/j.1742-4658.2008.06655.x
    [58] Cheshenko N,Trepanier J B,Segarra T J,et al. HSV usurps eukaryotic initiation factor 3 subunit M for viral protein translation: novel prevention target[J]. PLoS One,2010,5(7):e11829. doi: 10.1371/journal.pone.0011829
    [59] Gu H,Liang Y,Mandel G,et al. Components of the REST/CoREST/histone deacetylase repressor complex are disrupted,modified,and translocated in HSV-1-infected cells[J]. Proc Natl Acad Sci U S A,2005,102(21):7571-7576. doi: 10.1073/pnas.0502658102
  • [1] 李志霄, 郑霞, 李春玲, 刘庆圣, 张衡.  miR-205-5p靶向ERBB3调控PI3K/AKT/mTOR通路抑制血管生成在痔疮中的分子机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240604
    [2] 朱磊, 李瑞雪, 鲍长磊, 黄晨宸, 梁书鑫, 赵振林, 朱洪.  MSC-exo一种新型细胞递送工具转运靶向基因调控胰腺癌增殖效应分析, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240206
    [3] 周婷, 何影, 董晓函, 习杨彦彬, 陈波, 佟钧, 毛瑞.  miR-219-5p靶向SOX5在口腔癌中的作用初探, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230201
    [4] 马振桓, 李震, 周香林, 李国剑, 杨国凯, 万嘉, 杜玲娟, 杨镛.  碘-125粒子调控微小RNA-193b-5p抑制胃癌的增殖和侵袭, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220120
    [5] 张丽菊, 姜晓明, 陈昌贤, 吴喜, 张振勇, 刘为军.  长链非编码RNA-p21调控微小RNA-9/去乙酰化酶1信号通路逆转结直肠癌细胞奥沙利铂耐药性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220519
    [6] 何花, 范晶华, 张燕玲, 李杨, 李海雯, 武彦.  免疫低下人群感染水痘-带状疱疹病毒38例的临床特征, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220820
    [7] 薛国强, 卫欣欣, 姚娜, 赵文化.  二甲双胍通过调控PARP-1活性对2型糖尿病肾脏的保护作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210632
    [8] 吴翰欣, 俞建昆, 高淩, 李明阳, 吴小海, 邰文琳.  肺癌中长链非编码RNA DICER1-AS1的表达变化及意义, 昆明医科大学学报.
    [9] 张小超, 杨仁华, 申莹, 何红艳, 钟金萍, 沈志强, 陈鹏.  老鹳草素调控家兔骨质疏松性骨折关键基因Cbfα 1的表达, 昆明医科大学学报.
    [10] 罗云, 罗钰辉, 刘孝东, 崔庆鹏.  大鼠CaSR基因的慢病毒高表达细胞系和RNA干扰质粒的构建及鉴定, 昆明医科大学学报.
    [11] 李康健, 罗钰辉, 莫茵, 申吉泓, 刘孝东, 李颢.  小干扰RNA沉默HK-2细胞VDR及其对低枸橼酸尿症的意义, 昆明医科大学学报.
    [12] 郑志.  Syncytin慢病毒干扰载体及syncytin沉默Jurkat细胞系的建立, 昆明医科大学学报.
    [13] 王洋.  RNA干扰CCR7表达在肿瘤转移治疗中的作用, 昆明医科大学学报.
    [14] 周喆焱.  E-cadherin对非小细胞肺癌的转移和靶向治疗的影响, 昆明医科大学学报.
    [15] 边海霞.  单纯疱疹病毒性角膜炎抗氧化治疗的临床观察, 昆明医科大学学报.
    [16] 赵春芳.  干扰RNA抑制EGFR对乳腺癌细胞放射敏感性的影响, 昆明医科大学学报.
    [17] 郭贤利.  慢性乙型肝炎病毒基因型与干扰素疗效关系的研究, 昆明医科大学学报.
    [18] 李绍祥.  RNA干扰的途径和机制, 昆明医科大学学报.
    [19] 人乳头状瘤病毒16型E6基因短发夹结构RNA慢病毒载体的构建及鉴定, 昆明医科大学学报.
    [20] 宋鑫.  在鼻咽癌细胞中EB病毒LMP1调控G1/S 检测点重要相关蛋白的转录, 昆明医科大学学报.
  • 加载中
图(1) / 表(2)
计量
  • 文章访问数:  160
  • HTML全文浏览量:  56
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-28
  • 网络出版日期:  2024-08-29
  • 刊出日期:  2024-09-25

目录

    /

    返回文章
    返回