留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HIF-2α通过激活CXCR4调节关节软骨退变促进骨关节炎进程的机制

许鹏 肖亚洲 雷正亮 刘欢 刘露畅

许鹏, 肖亚洲, 雷正亮, 刘欢, 刘露畅. HIF-2α通过激活CXCR4调节关节软骨退变促进骨关节炎进程的机制[J]. 昆明医科大学学报.
引用本文: 许鹏, 肖亚洲, 雷正亮, 刘欢, 刘露畅. HIF-2α通过激活CXCR4调节关节软骨退变促进骨关节炎进程的机制[J]. 昆明医科大学学报.
Peng XU, Yazhou XIAO, Zhengliang LEI, Huan LIU, Luchang LIU. HIF-2Α Promotes Osteoarthritis Progression by Regulating Articular Cartilage Deg-eneration Through Activation of CXCR4[J]. Journal of Kunming Medical University.
Citation: Peng XU, Yazhou XIAO, Zhengliang LEI, Huan LIU, Luchang LIU. HIF-2Α Promotes Osteoarthritis Progression by Regulating Articular Cartilage Deg-eneration Through Activation of CXCR4[J]. Journal of Kunming Medical University.

HIF-2α通过激活CXCR4调节关节软骨退变促进骨关节炎进程的机制

基金项目: 四川省自然科学基金(2023NSFSC0546)
详细信息
    作者简介:

    许鹏(1981~),四川仪陇人,医学硕士,副主任医师,主要从事骨与软骨损伤的修复与重建、微创关节镜手术治疗关节损伤临床工作

    通讯作者:

    刘露畅,E-mail:13408317219@163.com

  • 中图分类号: R684.3

HIF-2Α Promotes Osteoarthritis Progression by Regulating Articular Cartilage Deg-eneration Through Activation of CXCR4

  • 摘要:   目的  探讨缺氧诱导因子2α(hypoxia-inducible factor 2alpha,HIF-2α)/C-X-C趋化因子受体4型(C-X-C receptor 4,CXCR4)通路调节骨关节炎(osteoarthritis,OA)进展的具体分子机制。  方法  用C57BL/6 雄性小鼠原代软骨细胞构建软骨退变细胞模型。将pcDNA、pcDNA-HIF-2α、si-NC、si-HIF-2α和si-CXCR4质粒并转染至细胞中,用RT-qPCR、Western blot和免疫荧光检测HIF-2α、CXCR4、MMP-3,Collagen II和aggrecan的表达水平。流式细胞术评估细胞凋亡,ELISA检测炎症因子PGE2、IL-6、IL-1β和TNF-α的水平。通过EMSA、CHIP和双荧光素酶报告验证HIF-2α和CXCR4的相互作用。  结果  HIF-2α在低氧环境下通过上调软骨细胞内MMP-3的表达水平和炎症因子PGE2、IL-6、IL-1β和TNF-α的分泌(P < 0.05),下调Collagen II和aggrecan表达水平(P < 0.001),促进了软骨细胞凋亡。HIF-2α与CXCR4的启动子结合,调控其转录表达。HIF-2α通过激活CXCR4在低氧环境下促进OA的进展。而敲低CXCR4后,抑制了HIF-2α对软骨细胞炎症、降解和凋亡的促进作用,缓解OA的进展。  结论  HIF-2α/CXCR4轴可以有效介导软骨细胞炎症反应、基质降解和凋亡。
  • 图  1  HIF-2α在低氧环境下诱发并加速OA的进展($ \bar x \pm s $,n = 3)

    A:RT-qPCR检测转染效率;B:Western blot检测转染效率;C:流式细胞术检测细胞凋亡;D:RT-qPCR检测HIF-2α,MMP-3,Collagen II,aggrecan的表达水平;E:Western blot检测HIF-2α,MMP-3,Collagen II,aggrecan的蛋白表达水平;F:ELISA检测PGE2,IL-6,TNF-α,IL-1β的含量;nsP > 0.05,*P < 0.05,**P < 0.01,***P < 0.001。

    Figure  1.  HIF-2α induces and accelerates the progression of OA in a hypoxic environment ($ \bar x \pm s $,n = 3)

    图  2  免疫荧光检测($ \bar x \pm s $,n = 3)

    A:免疫荧光检测Collagen II的表达(scale bar = 50 µm);B:Collagen II的表达的统计学分析;C:免疫荧光检测aggrecan的表达(scale bar = 50 µm);D;aggrecan的表达的统计学分析;nsP > 0.05,*P < 0.05,**P < 0.01,***P < 0.001。

    Figure  2.  Immunofluorescence assay ($ \bar x \pm s $, n = 3)

    图  3  HIF-2α与CXCR4 的转录调控作用研究($ \bar x \pm s $,n = 3)

    A:EMSA检测HIF-2α和CXCR4的相互作用;B:CHIP检测HIF-2α和CXCR4的启动子结合情况;C:双荧光素酶报告验证HIF-2α和CXCR4的相互作用;nsP > 0.05,*P < 0.05,**P < 0.01,***P < 0.001。

    Figure  3.  Studies on the transcriptional regulatory role of HIF-2α with CXCR4 ($ \bar x \pm s $,n = 3)

    图  4  HIF-2α通过激活CXCR4在低氧环境下促进OA的进展($ \bar x \pm s $,n = 3)

    A:RT-qPCR检测转染效率;B:Western blot检测转染效率;C:流式细胞术检测细胞凋亡;D:RT-qPCR检测CXCR4,MMP-3,Collagen II,aggrecan的表达水平;E:Western blot检测CXCR4,MMP-3,Collagen II,aggrecan的蛋白表达水平;F:ELISA检测PGE2,IL-6,TNF-α,IL-1β的含量。nsP > 0.05,*P < 0.05,**P < 0.01,***P < 0.001。

    Figure  4.  HIF-2α promotes OA progression through activation of CXCR4 in a hypoxic environment ($ \bar x \pm s $,n = 3)

    图  5  免疫荧光检测($ \bar x \pm s $,n = 3)

    A:免疫荧光检测Collagen II的表达(scale bar = 50 µm);B:Collagen II的表达的统计学分析;C:免疫荧光检测aggrecan的表达(scale bar = 50 µm);D;aggrecan的表达的统计学分析;nsP > 0.05,*P < 0.05,**P < 0.01,***P < 0.001。

    Figure  5.  Immunofluorescence assay ($ \bar x \pm s $,n = 3)

    表  1  PCR引物序列

    Table  1.   PCR primer sequences

    基因引物序列(5′-3′)引物长度(bp)
    HIF-2αForward5′-CCACCGAGCGTGACTTCT-3′18
    Reverse5′-CATAGGCAGAGCGTCCAA-3′19
    MMP-3Forward5′-CCACAGACTTGTCCCGTTTC-3′20
    Reverse5′-TCGTGCCCTCGTATAGCC-3′18
    Collagen IIForward5′-ACTGGTGGAGCAGCAAGAGC-3′21
    Reverse5′-GCGATGTCAATAATGGGAAGG-3′22
    aggrecanForward5′-CGGGAAGGTTGCTATGGT-3′18
    Reverse5′-CCTGTCTGGTTGGCGTGT-3′18
    CXCR4Forward5′-CCAGCCCTCCTCCTGACTA-3′20
    Reverse5′-ATCCTTGCTTGATGACCC-3′18
    β-actinForward5′-CATTGTTACCAACTGGGACG-3′21
    Reverse5′-AGGATGGCGTGAGGGAGA-3′18
    下载: 导出CSV
  • [1] Shen K, Zhou H, Zuo Q, et al. GATD3A-deficiency-induced mitochondrial dysfunction facilitates senescence of fibroblast-like synoviocytes and osteoarthritis progression[J]. Nat Commun, 2024, 15(1): 10-23. doi: 10.1038/s41467-023-44064-7
    [2] 宋洋. Nrf2-CHI3L1信号轴对创伤性骨关节炎的作用机制及基因治疗研究[D]. 2023.
    [3] Wang L J, Zeng N, Yan Z P, et al. Post-traumatic osteoarthritis following ACL injury[J]. Arthritis Res Ther, 2020, 22(1): 57. doi: 10.1186/s13075-020-02156-5
    [4] Zhang C, Zhao R, Dong Z, et al. IHH-GLI-1-HIF-2α signalling influences hypertrophic chondrocytes to exacerbate osteoarthritis progression[J]. J Orthop Translat, 2024, 49: 207-217. doi: 10.1016/j.jot.2024.09.008
    [5] Li W, Wu N, Wang J, et al. Role of HIF-2α/NF-κB pathway in mechanical stress-induced temporomandibular joint osteoarthritis[J]. Oral Dis, 2022, 28(8): 2239-2247. doi: 10.1111/odi.13986
    [6] Ye T, He F, Lu L, et al. The effect of oestrogen on mandibular condylar cartilage via hypoxia-inducible factor-2α during osteoarthritis development[J]. Bone, 2020, 130: 115-123.
    [7] Ito Y, Matsuzaki T, Ayabe F, et al. Both microRNA-455-5p and -3p repress hypoxia-inducible factor-2α expression and coordinately regulate cartilage homeostasis[J]. Nat Commun, 2021, 12(1): 41-48. doi: 10.1038/s41467-020-20292-z
    [8] Hiraide T, Tsuda N, Momoi M, et al. CXCL12/CXCR4 pathway as a novel therapeutic target for RNF213-associated pulmonary arterial hypertension[J]. Sci Rep, 2024, 14(1): 26604. doi: 10.1038/s41598-024-77388-5
    [9] Singh D D, Yadav D K, Shin D. Targeting the CXCR4/CXCL12 Axis to overcome drug resistance in triple-negative breast cancer[J]. Cells, 2025, 14(18): 01.
    [10] Zheng H, Fang J, Lu W, et al. TCF12 regulates the TGF-β/Smad2/3 signaling pathway to accelerate the progression of osteoarthritis by targeting CXCR4[J]. J Orthop Translat, 2024, 44: 35-46. doi: 10.1016/j.jot.2023.11.006
    [11] Yang T, Li C, Li Y, et al. MicroRNA-146a-5p alleviates the pathogenesis of osteoarthritis by inhibiting SDF-1/CXCR4-induced chondrocyte autophagy[J]. Int Immunopharmacol, 2023, 117: 109938. doi: 10.1016/j.intimp.2023.109938
    [12] Jia D, Li Y, Han R, et al. miR‑146a‑5p expression is upregulated by the CXCR4 antagonist TN14003 and attenuates SDF-1induced cartilage degradation[J]. Mol Med Rep, 2019, 19(5): 4388-4400.
    [13] Xiang Y, Li Y, Yang L, et al. miR-142-5p as a CXCR4-Targeted MicroRNA Attenuates SDF-1-induced chondrocyte apoptosis and cartilage degradation via inactivating MAPK signaling pathway[J]. Biochem Res Int, 2020, 2020: 4508108.
    [14] 唐超, 魏伟生, 蒋永颂, et al. miR-21-5p靶向TNFAIP3对大鼠骨关节炎软骨细胞损伤的影响 %J 中国骨与关节杂志[J], 2023, 12(01): 45-52.
    [15] Jia Y, Yan Q, Zheng Y, et al. Long non-coding RNA NEAT1 mediated RPRD1B stability facilitates fatty acid metabolism and lymph node metastasis via c-Jun/c-Fos/SREBP1 axis in gastric cancer[J]. J Exp Clin Cancer Res, 2022, 41(1): 287. doi: 10.1186/s13046-022-02449-4
    [16] Mumby S, Perros F, Grynblat J, et al. Differential responses of pulmonary vascular cells from PAH patients and controls to TNFα and the effect of the BET inhibitor JQ1[J]. Respir Res, 2023, 24(1): 193. doi: 10.1186/s12931-023-02499-y
    [17] Li C, Li W, Pu G, et al. Exosomes derived from miR-338-3p-modified adipose stem cells inhibited inflammation injury of chondrocytes via targeting RUNX2 in osteoarthritis[J]. J Orthop Surg Res, 2022, 17(1): 567. doi: 10.1186/s13018-022-03437-2
    [18] Tu T C, Nagano M, Yamashita T, et al. A chemokine receptor, CXCR4, which is regulated by hypoxia-inducible factor 2α, is crucial for functional endothelial progenitor cells migration to ischemic tissue and wound repair[J]. Stem Cells Dev, 2016, 25(3): 266-276. doi: 10.1089/scd.2015.0290
    [19] Qian Y, Chu G, Zhang L, et al. M2 macrophage-derived exosomal miR-26b-5p regulates macrophage polarization and chondrocyte hypertrophy by targeting TLR3 and COL10A1 to alleviate osteoarthritis[J]. J Nanobiotechnology, 2024, 22(1): 72. doi: 10.1186/s12951-024-02336-4
    [20] Fang G, Wen X, Jiang Z, et al. FUNDC1/PFKP-mediated mitophagy induced by KD025 ameliorates cartilage degeneration in osteoarthritis[J]. Mol Ther, 2023, 31(12): 3594-3612. doi: 10.1016/j.ymthe.2023.10.016
    [21] Chen J, Chen N, Zhang T, et al. Rongjin niantong fang ameliorates cartilage degeneration by regulating the SDF-1/CXCR4-p38MAPK signalling pathway[J]. Pharm Biol, 2022, 60(1): 2253-2265. doi: 10.1080/13880209.2022.2143533
    [22] Zhang X A, Kong H. Mechanism of HIFs in osteoarthritis[J]. Front Immunol, 2023, 14: 1168799. doi: 10.3389/fimmu.2023.1168799
    [23] Yang J, Shin Y, Kim H J, et al. Prokineticin 2 is a catabolic regulator of osteoarthritic cartilage destruction in mouse[J]. Arthritis Res Ther, 2023, 25(1): 236. doi: 10.1186/s13075-023-03206-4
    [24] Zhou K, He S, Yu H, et al. Inhibition of syndecan-4 reduces cartilage degradation in murine models of osteoarthritis through the downregulation of HIF-2α by miR-96-5p[J]. Lab Invest, 2021, 101(8): 1060-1070. doi: 10.1038/s41374-021-00595-5
    [25] 汪航. 靶向HIF-2α延缓骨关节炎关节软骨退变作用的研究[D]. 山西医科大学, 2023.
    [26] Zhou Y, Ming J, Deng M, et al. Chemically modified curcumin (CMC2.24) alleviates osteoarthritis progression by restoring cartilage homeostasis and inhibiting chondrocyte apoptosis via the NF-κB/HIF-2α axis[J]. J Mol Med (Berl), 2020, 98(10): 1479-1491. doi: 10.1007/s00109-020-01972-1
    [27] Cho C, Kang L J, Jang D, et al. Cirsium japonicum var. maackii and apigenin block Hif-2α-induced osteoarthritic cartilage destruction[J]. J Cell Mol Med, 2019, 23(8): 5369-5379. doi: 10.1111/jcmm.14418
    [28] Qin H, Zhao X, Hu Y J, et al. Inhibition of SDF-1/CXCR4 axis to alleviate abnormal bone formation and angiogenesis could improve the subchondral bone microenvironment in osteoarthritis[J]. Biomed Res Int, 2021, 2021: 8852574. doi: 10.1155/2021/8852574
    [29] Wang G, Li Y, Meng X, et al. The study of targeted blocking SDF-1/CXCR4 signaling pathway with three antagonists on MMPs, type II collagen, and aggrecan levels in articular cartilage of guinea pigs[J]. J Orthop Surg Res, 2020, 15(1): 195. doi: 10.1186/s13018-020-01646-1
    [30] Yang K, Xie Q, Liao J, et al. Shang-ke-huang-shui and coptisine alleviate osteoarthritis in the knee of monosodium iodoacetate-induced rats through inhibiting CXCR4 signaling[J]. J Ethnopharmacol, 2023, 311: 116476. doi: 10.1016/j.jep.2023.116476
    [31] Tang X, He J, Hao Y. Histone demethylase PHF8 protected against chondrocyte injury and alleviated posttraumatic osteoarthritis by epigenetically enhancing WWP2 expression[J]. Hum Exp Toxicol, 2024, 43: 9603271241292165.
    [32] 黄少烁. 黄芪甲苷通过SDF-1/CXCR4信号通路对骨性关节炎作用机制的实验研究[D]. 2023.
    [33] 许颖捷, 贾梦莹, 龚忠诚. 异常流体剪切力通过NF-κB及MIF/CXCR4-NLRP3信号通路促进关节细胞焦亡的作用及机制研究[C]. 第20次全国颞下颌关节病学及HE学研讨会暨第七届亚洲颞下颌关节学术大会, 2023: 3.
    [34] Cheng B, Ma X, Zhou Y, et al. Recent progress in the development of hypoxia-inducible factor 2α (HIF-2α) modulators: Inhibitors, agonists, and degraders (2009-2024)[J]. Eur J Med Chem, 2024, 275: 116645. doi: 10.1016/j.ejmech.2024.116645
    [35] Kuo Y C, Au H K, Hsu J L, et al. IGF-1R promotes symmetric self-renewal and migration of alkaline phosphatase(+) germ stem cells through HIF-2α-OCT4/CXCR4 Loop under Hypoxia[J]. Stem Cell Reports, 2018, 10(2): 524-537. doi: 10.1016/j.stemcr.2017.12.003
  • [1] 李智勇, 陈政刚, 彭俊, 梁大中.  miR-16-5p通过介导GPR30表达促进OGD模型小胶质细胞的炎症反应和凋亡, 昆明医科大学学报. 2025, 46(10): 23-31. doi: 10.12259/j.issn.2095-610X.S20251003
    [2] 韩志萍, 陈静, 马涛, 王少兰, 吕建东.  帕金森病患者血清miR-21、miR-23a水平与认知功能、炎症反应的相关性, 昆明医科大学学报. 2025, 46(11): 116-121. doi: 10.12259/j.issn.2095-610X.S20251115
    [3] 周晓娟, 杨立斌, 杨鹏, 龚浩, 杨旭.  微体外循环对冠状动脉搭桥术后全身炎症反应和输血需求的影响, 昆明医科大学学报. 2025, 46(3): 58-65. doi: 10.12259/j.issn.2095-610X.S20250310
    [4] 朱毅琳, 彭潇, 张贵福, 龙惠南.  基于lncRNA /Hedgehog信号通路表达探讨骨关节炎中自噬对软骨细胞凋亡的影响, 昆明医科大学学报. 2025, 46(6): 38-45. doi: 10.12259/j.issn.2095-610X.S20250605
    [5] 陈笑天, 丁振飞, 宋宜宁, 蒋邦红, 张帆, 高艺, 官建中.  miR-21-5p抑制SIRT2/AKT轴促进骨关节炎进展机制, 昆明医科大学学报. 2025, 46(12): 1-10.
    [6] 李妍平, Fariha Tasnim Efty, 陆志星, 朱灵英.  APOE4调控LRP1对Aβ25-35诱导的星形胶质细胞氧化应激和炎症反应的作用, 昆明医科大学学报. 2025, 46(11): 18-25. doi: 10.12259/j.issn.2095-610X.S20251103
    [7] 杨曼, 赵兴安, 葛芸娜, 秦娟, 王玺雅, 陶四明.  基于综合生物信息分析鉴定心房颤动相关炎症基因及其与免疫细胞浸润的关联, 昆明医科大学学报. 2024, 45(3): 18-29. doi: 10.12259/j.issn.2095-610X.S20240303
    [8] 陈一晗, 张善勇, 丁昱, 张莉.  颞下颌关节骨关节炎分子致病机制的研究进展, 昆明医科大学学报. 2024, 45(7): 1-5. doi: 10.12259/j.issn.2095-610X.S20240701
    [9] 谢飞飞, 辛隐子, 徐敏, 李景涵, 王伟.  长链非编码RNA在软骨发育及骨关节炎中作用机制的研究进展, 昆明医科大学学报. 2024, 45(10): 1-7. doi: 10.12259/j.issn.2095-610X.S20241001
    [10] 赵亚玲, 武坤, 王凯, 黄蓉, 何根娅, 纳玉辉, 何苗, 丁臻博, 张彩营.  妊娠期糖尿病宫内高血糖环境对子代外周炎症反应的影响, 昆明医科大学学报. 2023, 44(11): 70-75. doi: 10.12259/j.issn.2095-610X.S20231110
    [11] 邓绍友, 李蓉, 李进涛, 赵玉兰, 王佩锦, 郑红.  基于网络药理学探讨恒古骨伤愈合剂治疗骨关节炎的机制及动物实验初步验证, 昆明医科大学学报. 2023, 44(7): 34-39. doi: 10.12259/j.issn.2095-610X.S20230701
    [12] 皇甫文丽, 黄瑶, 刘波, 吕长海, 刘娟, 代自超.  建立大鼠颞下颌关节骨关节炎动物模型的2种方法比较, 昆明医科大学学报. 2023, 44(3): 49-53. doi: 10.12259/j.issn.2095-610X.S20230308
    [13] 王子涵, 叶改映, 赵涛, 张俊, 胡瑜.  mTOR在SD大鼠TMJOA髁突软骨中表达变化的实验研究, 昆明医科大学学报. 2022, 43(10): 10-15. doi: 10.12259/j.issn.2095-610X.S20221033
    [14] 李俊杰, 蒋海燕, 白文娅, 霍思颖, 孙志生, 邵建林.  沉默RND3表达对氧糖缺失/复氧复糖损伤海马神经细胞炎症反应和细胞凋亡的影响, 昆明医科大学学报. 2021, 42(10): 14-21. doi: 10.12259/j.issn.2095-610X.S20211012
    [15] 王光, 杨童欣, 姜永明, 方克伟, 刘建和, 李炯明.  抗菌肽LL-37诱导大鼠膀胱壁肥大细胞的炎症反应, 昆明医科大学学报. 2019, 40(06): 23-27.
    [16] 李勤学, 李传静, 王锋.  慢病毒介导siRNA沉默MMP-3对大鼠创伤性骨性关节炎模型软骨退变的影响, 昆明医科大学学报. 2019, 40(06): 33-38.
    [17] 闫慧玲, 赵宏斌, 钱传云, 王应忠, 张洋, 沈相霖, 蒋罡, 高爽.  膝骨关节炎疗效评估的研究进展, 昆明医科大学学报. 2019, 40(01): 123-127.
    [18] 屈晶磊, 杨远征.  换血对高胆红素血症患儿肾功能、炎症因子及血液内环境的影响, 昆明医科大学学报. 2018, 39(01): 96-99.
    [19] 李飞.  西乐葆对骨折延迟愈合患者血液流变学和炎症因子水平的影响, 昆明医科大学学报. 2016, 37(10): -.
    [20] 代龙金.  β-连环蛋白与膝骨关节炎相关性研究, 昆明医科大学学报. 2015, 36(12): -.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  14
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-25

目录

    /

    返回文章
    返回