留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热量限制与间歇性禁食对炎症及代谢疾病的影响

张熙冰 牛玲 刘方 冉江华

张熙冰, 牛玲, 刘方, 冉江华. 热量限制与间歇性禁食对炎症及代谢疾病的影响[J]. 昆明医科大学学报.
引用本文: 张熙冰, 牛玲, 刘方, 冉江华. 热量限制与间歇性禁食对炎症及代谢疾病的影响[J]. 昆明医科大学学报.
Xibing Zhang, Ling Niu, Fang Liu, Jianghua Ran. The Effects of Caloric Restriction and Intermittent Fasting on Inflammation and Metabolic Diseases[J]. Journal of Kunming Medical University.
Citation: Xibing Zhang, Ling Niu, Fang Liu, Jianghua Ran. The Effects of Caloric Restriction and Intermittent Fasting on Inflammation and Metabolic Diseases[J]. Journal of Kunming Medical University.

热量限制与间歇性禁食对炎症及代谢疾病的影响

基金项目: 国家自然科学基金项目(82060127),春城计划高层次人才培养项目(C202214007)
详细信息
    作者简介:

    张熙冰(1985~),陕西省商洛人,博士研究生,主治医师,主要从事肝胆胰外科及肝移植的研 究工作

    通讯作者:

    刘方,E-mail:liufang@kmmu.edu.cn

    冉江华,E-mail:ranjianghua@kmmu.edu.cn

  • 中图分类号: R593;R589

The Effects of Caloric Restriction and Intermittent Fasting on Inflammation and Metabolic Diseases

More Information
    Corresponding author: 冉江华,博士,二级教授,博士生导师,现任昆明市第一人民医院党委副书记、云南省器官移植质量控制中心主任。享受国务院特殊津贴、云南省政府特殊津贴,并荣获云南省中青年学术和技术带头人、云南省有突出贡献优秀专业技术人才、云岭名医、云南省医学领军人才、万人计划名医、春城人才等20余项荣誉称号。学术兼职包括中国研究型医院学会移植医学专业委员会常委、中国医院协会器官获取与分配工作委员会常委、中华医学会器官移植学分会委员、中国医师协会器官移植医师分会委员、中国医师协会肝脏外科分会委员等。主要从事肝胆胰外科及器官移植领域的研究,主持国家自然科学基金及省、市科研项目10余项,获省、市科技奖励33项(其中省级一等奖2项),拥有国家专利5项、软件著作权2项,以第一或通讯作者发表论文100余篇(SCI收录20余篇),主编和参编学术著作14部,参与制定和编写指南、共识13部。
  • 摘要: 热量限制(Caloric Restriction,CR)和间歇性禁食(Intermittent Fasting,IF)作为2种饮食干预策略,近年来因其在调节炎症和代谢紊乱中的潜在作用受到广泛关注。随着高热量饮食和久坐生活方式的普及,肥胖、2型糖尿病、心血管疾病等代谢性疾病的发病率显著增加,给公共卫生带来了严峻挑战。本综述探讨了CR和IF通过代谢重塑、自噬激活及抑制炎症通路等机制,在减少炎症、改善代谢健康中的作用。特别是在多发性硬化、系统性红斑狼疮等炎症性疾病中,这2种策略表现出显著的干预效果。此外,CR和IF在肥胖、糖尿病及心血管疾病的代谢调节中也有积极作用。尽管它们在临床应用中具有潜力,但长期依从性和安全性仍是推广的关键挑战。未来研究应侧重个性化干预和多治疗手段的联合应用,以进一步验证CR和IF的临床价值。综上所述,CR和IF为慢性疾病管理提供了新的非药物策略,具有重要的应用前景。
  • [1] Christ A,Lauterbach M,Latz E. Western Diet and the Immune System: An Inflammatory Connection[J]. Immunity,2019,51(5):794-811. doi: 10.1016/j.immuni.2019.09.020
    [2] Christ A,Latz E. The Western lifestyle has lasting effects on metaflammation[J]. Nat Rev Immunol,2019,19(5):267-268. doi: 10.1038/s41577-019-0156-1
    [3] Zhou R H,Wang Q,Hu X M,et al. The influence of fasting and caloric restriction on inflammation levels in humans: A protocol for systematic review and meta analysis[J]. Medicine (Baltimore),2021,100(15):e25509.
    [4] Brogi S,Tabanelli R,Puca S,et al. Intermittent Fasting: Myths,Fakes and Truth on This Dietary Regimen Approach[J]. Foods,2024,13(13):1-44.
    [5] Procaccini C,de Candia P,Russo C,et al. Caloric restriction for the immunometabolic control of human health[J]. Cardiovasc Res,2024,119(18):2787-2800. doi: 10.1093/cvr/cvad035
    [6] Hoong C,Chua M. SGLT2 Inhibitors as Calorie Restriction Mimetics: Insights on Longevity Pathways and Age-Related Diseases[J]. Endocrinology,2021,162(8):1-20.
    [7] Kokten T,Hansmannel F,Ndiaye N C,et al. Calorie Restriction as a New Treatment of Inflammatory Diseases[J]. Adv Nutr,2021,12(4):1558-1570. doi: 10.1093/advances/nmaa179
    [8] Mattson M P,Longo V D,Harvie M. Impact of intermittent fasting on health and disease processes[J]. Ageing Res Rev,2017,39:46-58. doi: 10.1016/j.arr.2016.10.005
    [9] Diab R,Dimachkie L,Zein O,et al. Intermittent Fasting Regulates Metabolic Homeostasis and Improves Cardiovascular Health[J]. Cell Biochem Biophys,2024,82(3):1583-1597.
    [10] Senesi P,Ferrulli A,Luzi L,et al. Diabetes Mellitus and Cardiovascular Diseases: Nutraceutical Interventions Related to Caloric Restriction[J]. Int J Mol Sci,2021,22(15):1-25.
    [11] Jaramillo A P,Castells J,Ibrahimli S,et al. Time-Restricted Feeding and Intermittent Fasting as Preventive Therapeutics: A Systematic Review of the Literature[J]. Cureus,2023,15(7):e42300.
    [12] Ferreira-Marques M,Aveleira C A,Carmo-Silva S,et al. Caloric restriction stimulates autophagy in rat cortical neurons through neuropeptide Y and ghrelin receptors activation[J]. Aging (Albany NY),2016,8(7):1470-1484. doi: 10.18632/aging.100996
    [13] Lempiainen J,Finckenberg P,Mervaala E E,et al. Caloric restriction ameliorates kidney ischaemia/reperfusion injury through PGC-1alpha-eNOS pathway and enhanced autophagy[J]. Acta Physiol (Oxf),2013,208(4):410-421. doi: 10.1111/apha.12120
    [14] Ferreira-Marques M,Carvalho A,Cavadas C,et al. PI3K/AKT/MTOR and ERK1/2-MAPK signaling pathways are involved in autophagy stimulation induced by caloric restriction or caloric restriction mimetics in cortical neurons[J]. Aging (Albany NY),2021,13(6):7872-7882. doi: 10.18632/aging.202805
    [15] Eriau E,Paillet J,Kroemer G,et al. Metabolic Reprogramming by Reduced Calorie Intake or Pharmacological Caloric Restriction Mimetics for Improved Cancer Immunotherapy[J]. Cancers (Basel),2021,13(6):1-25.
    [16] Yan Y,Zhou X E,Xu H E,et al. Structure and Physiological Regulation of AMPK[J]. Int J Mol Sci,2018,19(11):1-15.
    [17] Browne G J,Finn S G,Proud C G. Stimulation of the AMP-activated protein kinase leads to activation of eukaryotic elongation factor 2 kinase and to its phosphorylation at a novel site,serine 398[J]. J Biol Chem,2004,279(13):12220-12231. doi: 10.1074/jbc.M309773200
    [18] Huo Y,Iadevaia V,Yao Z,et al. Stable isotope-labelling analysis of the impact of inhibition of the mammalian target of rapamycin on protein synthesis[J]. Biochem J,2012,444(1):141-151. doi: 10.1042/BJ20112107
    [19] Duvel K,Yecies J L,Menon S,et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1[J]. Mol Cell,2010,39(2):171-183. doi: 10.1016/j.molcel.2010.06.022
    [20] Mayor E. Neurotrophic effects of intermittent fasting,calorie restriction and exercise: a review and annotated bibliography[J]. Front Aging,2023,4:1161814. doi: 10.3389/fragi.2023.1161814
    [21] Elkhwanky M S,Hakkola J. Extranuclear Sirtuins and Metabolic Stress[J]. Antioxid Redox Signal,2018,28(8):662-676. doi: 10.1089/ars.2017.7270
    [22] Fagerli E,Escobar I,Ferrier F J,et al. Sirtuins and cognition: implications for learning and memory in neurological disorders[J]. Front Physiol,2022,13:908689. doi: 10.3389/fphys.2022.908689
    [23] Zhang S,Sun S,Wei X,et al. Short-term moderate caloric restriction in a high-fat diet alleviates obesity via AMPK/SIRT1 signaling in white adipocytes and liver[J]. Food Nutr Res,2022,66:1-12.
    [24] Huang J,Dibble C C,Matsuzaki M,et al. The TSC1-TSC2 complex is required for proper activation of mTOR complex 2[J]. Mol Cell Biol,2008,28(12):4104-4115. doi: 10.1128/MCB.00289-08
    [25] Zhao Y,Jia M,Chen W,et al. The neuroprotective effects of intermittent fasting on brain aging and neurodegenerative diseases via regulating mitochondrial function[J]. Free Radic Biol Med,2022,182:206-218. doi: 10.1016/j.freeradbiomed.2022.02.021
    [26] Watson K,Baar K. mTOR and the health benefits of exercise[J]. Semin Cell Dev Biol,2014,36:130-139. doi: 10.1016/j.semcdb.2014.08.013
    [27] Sadria M,Layton A T. Interactions among mTORC,AMPK and SIRT: A computational model for cell energy balance and metabolism[J]. Cell Commun Signal,2021,19(1):1-17. doi: 10.1186/s12964-021-00706-1
    [28] Ersahin T,Tuncbag N,Cetin-Atalay R. The PI3K/AKT/mTOR interactive pathway[J]. Mol Biosyst,2015,11(7):1946-1954. doi: 10.1039/C5MB00101C
    [29] Liu T,Zhang L,Joo D,et al. NF-kappaB signaling in inflammation[J]. Signal Transduct Target Ther,2017,2:17023. doi: 10.1038/sigtrans.2017.23
    [30] Vella L,Caldow M K,Larsen A E,et al. Resistance exercise increases NF-kappaB activity in human skeletal muscle[J]. Am J Physiol Regul Integr Comp Physiol,2012,302(6):R667-R673. doi: 10.1152/ajpregu.00336.2011
    [31] Mattson M P,Arumugam T V. Hallmarks of Brain Aging: Adaptive and Pathological Modification by Metabolic States[J]. Cell Metab,2018,27(6):1176-1199. doi: 10.1016/j.cmet.2018.05.011
    [32] Li G,Xie C,Lu S,et al. Intermittent Fasting Promotes White Adipose Browning and Decreases Obesity by Shaping the Gut Microbiota[J]. Cell Metab,2017,26(4):672-685. doi: 10.1016/j.cmet.2017.08.019
    [33] Bosch D B L,Boguna M,Sanchez A,et al. Sex-Dependent Metabolic Effects in Diet-Induced Obese Rats following Intermittent Fasting Compared with Continuous Food Restriction[J]. Nutrients,2024,16(7):1-16.
    [34] Baumeier C,Kaiser D,Heeren J,et al. Caloric restriction and intermittent fasting alter hepatic lipid droplet proteome and diacylglycerol species and prevent diabetes in NZO mice[J]. Biochim Biophys Acta,2015,1851(5):566-576. doi: 10.1016/j.bbalip.2015.01.013
    [35] Rahmani F,Ghezzi L,Tosti V,et al. Twelve Weeks of Intermittent Caloric Restriction Diet Mitigates Neuroinflammation in Midlife Individuals with Multiple Sclerosis: A Pilot Study with Implications for Prevention of Alzheimer's Disease[J]. J Alzheimers Dis,2023,93(1):263-273. doi: 10.3233/JAD-221007
    [36] Bai M,Wang Y,Han R,et al. Intermittent caloric restriction with a modified fasting-mimicking diet ameliorates autoimmunity and promotes recovery in a mouse model of multiple sclerosis[J]. J Nutr Biochem,2021,87:108493. doi: 10.1016/j.jnutbio.2020.108493
    [37] Zarini D,Pasbakhsh P,Nekoonam S,et al. Protective Features of Calorie Restriction on Cuprizone-induced Demyelination via Modulating Microglial Phenotype[J]. J Chem Neuroanat,2021,116:102013. doi: 10.1016/j.jchemneu.2021.102013
    [38] Feng Y,Qin J,Wang P,et al. Intermittent fasting attenuates cognitive dysfunction and systemic disease activity in mice with neuropsychiatric systemic lupus erythematosus[J]. Life Sci,2024,355:122999. doi: 10.1016/j.lfs.2024.122999
    [39] Kielmann J,Pucci L,Xydis A. Personalized Nutrition and Lifestyle Interventions in Systemic Lupus Erythematosus: A Case Report[J]. Integr Med (Encinitas),2023,21(6):22-27.
    [40] Hong S M,Lee J,Jang S G,et al. Intermittent Fasting Aggravates Lupus Nephritis through Increasing Survival and Autophagy of Antibody Secreting Cells in MRL/lpr Mice[J]. Int J Mol Sci,2020,21(22):1-12.
    [41] Constantin M M,Nita I E,Olteanu R,et al. Significance and impact of dietary factors on systemic lupus erythematosus pathogenesis[J]. Exp Ther Med,2019,17(2):1085-1090.
    [42] Barati M,Ghahremani A,Namdar A H. Intermittent fasting: A promising dietary intervention for autoimmune diseases[J]. Autoimmun Rev,2023,22(10):103408. doi: 10.1016/j.autrev.2023.103408
    [43] Zhang S,Zhong R,Tang S,et al. Metabolic regulation of the Th17/Treg balance in inflammatory bowel disease[J]. Pharmacol Res,2024,203:107184. doi: 10.1016/j.phrs.2024.107184
    [44] Song S,Chen L,Bai M,et al. Time-restricted feeding ameliorates dextran sulfate sodium-induced colitis via reducing intestinal inflammation[J]. Front Nutr,2022,9:1043783. doi: 10.3389/fnut.2022.1043783
    [45] Ranjbar M,Shab-Bidar S,Rostamian A,et al. The effects of intermittent fasting diet on quality of life,clinical symptoms,inflammation,and oxidative stress in overweight and obese postmenopausal women with rheumatoid arthritis: study protocol of a randomized controlled trial[J]. Trials,2024,25(1):1-12. doi: 10.1186/s13063-024-07977-2
    [46] Gunes-Bayir A,Mendes B,Dadak A. The Integral Role of Diets Including Natural Products to Manage Rheumatoid Arthritis: A Narrative Review[J]. Curr Issues Mol Biol,2023,45(7):5373-5388. doi: 10.3390/cimb45070341
    [47] Ostendorf D M,Caldwell A E,Zaman A,et al. Comparison of weight loss induced by daily caloric restriction versus intermittent fasting (DRIFT) in individuals with obesity: study protocol for a 52-week randomized clinical trial[J]. Trials,2022,23(1):1-19. doi: 10.1186/s13063-022-06523-2
    [48] Catenacci V A,Pan Z,Ostendorf D,et al. A randomized pilot study comparing zero-calorie alternate-day fasting to daily caloric restriction in adults with obesity[J]. Obesity (Silver Spring),2016,24(9):1874-1883. doi: 10.1002/oby.21581
    [49] Thomas E A,Zaman A,Sloggett K J,et al. Early time-restricted eating compared with daily caloric restriction: A randomized trial in adults with obesity[J]. Obesity (Silver Spring),2022,30(5):1027-1038. doi: 10.1002/oby.23420
    [50] Silverii G A,Cresci B,Benvenuti F,et al. Effectiveness of intermittent fasting for weight loss in individuals with obesity: A meta-analysis of randomized controlled trials[J]. Nutr Metab Cardiovasc Dis,2023,33(8):1481-1489. doi: 10.1016/j.numecd.2023.05.005
    [51] Morales-Suarez-Varela M,Collado S E,Peraita-Costa I,et al. Intermittent Fasting and the Possible Benefits in Obesity,Diabetes,and Multiple Sclerosis: A Systematic Review of Randomized Clinical Trials[J]. Nutrients,2021,13(9):1-16.
    [52] Pratchayasakul W,Arunsak B,Suparan K,et al. Combined caloric restriction and exercise provides greater metabolic and neurocognitive benefits than either as a monotherapy in obesity with or without estrogen deprivation[J]. J Nutr Biochem,2022,110:109125. doi: 10.1016/j.jnutbio.2022.109125
    [53] Harris L,Hamilton S,Azevedo L B,et al. Intermittent fasting interventions for treatment of overweight and obesity in adults: A systematic review and meta-analysis[J]. JBI Database System Rev Implement Rep,2018,16(2):507-547. doi: 10.11124/JBISRIR-2016-003248
    [54] Zhu S,Surampudi P,Rosharavan B,et al. Intermittent fasting as a nutrition approach against obesity and metabolic disease[J]. Curr Opin Clin Nutr Metab Care,2020,23(6):387-394. doi: 10.1097/MCO.0000000000000694
    [55] Silverii G A,Cresci B,Benvenuti F,et al. Effectiveness of intermittent fasting for weight loss in individuals with obesity: A meta-analysis of randomized controlled trials[J]. Nutr Metab Cardiovasc Dis,2023,33(8):1481-1489. doi: 10.1016/j.numecd.2023.05.005
    [56] Malinowski B,Zalewska K,Wesierska A,et al. Intermittent Fasting in Cardiovascular Disorders-An Overview[J]. Nutrients,2019,11(3):1-18.
    [57] Allaf M,Elghazaly H,Mohamed O G,et al. Intermittent fasting for the prevention of cardiovascular disease[J]. Cochrane Database Syst Rev,2021,1(1):D13496.
    [58] Tinsley G M,Horne B D. Intermittent fasting and cardiovascular disease: Current evidence and unresolved questions[J]. Future Cardiol,2018,14(1):47-54. doi: 10.2217/fca-2017-0038
    [59] Abdellatif M,Sedej S. Cardiovascular benefits of intermittent fasting[J]. Cardiovasc Res,2020,116(3):e36-e38. doi: 10.1093/cvr/cvaa022
    [60] Ozcan M,Abdellatif M,Javaheri A,et al. Risks and Benefits of Intermittent Fasting for the Aging Cardiovascular System[J]. Can J Cardiol,2024,40(8):1445-1457. doi: 10.1016/j.cjca.2024.02.004
    [61] Kern L,Kviatcovsky D,He Y,et al. Impact of caloric restriction on the gut microbiota[J]. Curr Opin Microbiol,2023,73:102287. doi: 10.1016/j.mib.2023.102287
    [62] Tanca A,Abbondio M,Palomba A,et al. Caloric restriction promotes functional changes involving short-chain fatty acid biosynthesis in the rat gut microbiota[J]. Sci Rep,2018,8(1):14778. doi: 10.1038/s41598-018-33100-y
    [63] Gong T,Di H,Hu Y,et al. Gut microbiota and metabolites exhibit different profiles after very-low-caloric restriction in patients with type 2 diabetes[J]. Front Endocrinol (Lausanne),2023,14:1289571.
    [64] Guo Y,Luo S,Ye Y,et al. Intermittent Fasting Improves Cardiometabolic Risk Factors and Alters Gut Microbiota in Metabolic Syndrome Patients[J]. J Clin Endocrinol Metab,2021,106(1):64-79. doi: 10.1210/clinem/dgaa644
    [65] Zhang A,Wang J,Zhao Y,et al. Intermittent fasting,fatty acid metabolism reprogramming,and neuroimmuno microenvironment: mechanisms and application prospects[J]. Front Nutr,2024,11:1485632. doi: 10.3389/fnut.2024.1485632
    [66] Sharma A,Anand S K,Singh N,et al. AMP-activated protein kinase: An energy sensor and survival mechanism in the reinstatement of metabolic homeostasis[J]. Exp Cell Res,2023,428(1):113614. doi: 10.1016/j.yexcr.2023.113614
    [67] Kolb H,Kempf K,Rohling M,et al. Ketone bodies: from enemy to friend and guardian angel[J]. BMC Med,2021,19(1):1-15. doi: 10.1186/s12916-021-02185-0
    [68] Sharma A,Singh A K. Molecular mechanism of caloric restriction mimetics-mediated neuroprotection of age-related neurodegenerative diseases: An emerging therapeutic approach[J]. Biogerontology,2023,24(5):679-708. doi: 10.1007/s10522-023-10045-y
    [69] Bhoumik S,Kesherwani R,Kumar R,et al. Alternate day fasting and time-restricted feeding may confer similar neuroprotective effects during aging in male rats[J]. Biogerontology,2022,23(6):757-770. doi: 10.1007/s10522-022-09991-w
    [70] McCarty M F. Nutraceutical and Dietary Strategies for Up-Regulating Macroautophagy[J]. Int J Mol Sci,2022,23(4):1-16.
  • [1] 申屠昊鹏, 杨菁, 葛卫清, 周涛, 宋恩.  巨噬细胞极化与部分血栓性疾病的关系, 昆明医科大学学报. 2024, 46(): 1-8.
    [2] 张维华, 秦珊珊, 温思聪, 吴平宇, 宋昭光.  乙酰半胱氨酸雾化吸入配合无创呼吸机NIPSV模式通过调节免疫炎症反应治疗AECOPD合并呼吸衰竭的机制, 昆明医科大学学报. 2024, 45(7): 113-118. doi: 10.12259/j.issn.2095-610X.S20240717
    [3] 沈枫, 杨一帆, 白茹, 李姝, 刘爽, 徐健.  全身免疫炎症指数与系统性红斑狼疮患者疾病活动度的关联分析, 昆明医科大学学报. 2024, 45(10): 45-49. doi: 10.12259/j.issn.2095-610X.S20241007
    [4] 刘蓉, 孙杨, 罗发梦, 陶德智, 张海燕.  炎症性肠病患者疾病接受度与生存质量的相关性, 昆明医科大学学报. 2022, 43(5): 173-178. doi: 10.12259/j.issn.2095-610X.S20220507
    [5] 周洪江, 唐娟, 梁磊, 念馨.  嗜黏蛋白阿克曼菌与肥胖相关代谢性疾病的研究进展, 昆明医科大学学报. 2022, 43(1): 157-162. doi: 10.12259/j.issn.2095-610X.S20220143
    [6] 向盈盈, 宋飞, 杨向红, 周静, 于鸿滨, 魏云林, 季秀玲.  噬菌体疗法在口腔感染性疾病中的应用, 昆明医科大学学报. 2020, 41(06): 167-173.
    [7] 赵江, 闵向东, 张强, 万蓉, 蔡同建, 刘志涛.  云南省2013年至2017年食源性疾病暴发事件监测分析, 昆明医科大学学报. 2018, 39(06): 118-123.
    [8] 蔡斌, 宋海, 王振, 韩雪, 于建云.  TDP-43与神经退行性疾病及脑损伤的相关性研究进展, 昆明医科大学学报. 2018, 39(05): 124-127.
    [9] 茶春丽, 李靖娟, 陈国姝, 窦丽娜, 代留玲, 李俊.  透析患者微炎症状态与血脂代谢及钙磷代谢的相关性, 昆明医科大学学报. 2017, 38(01): 41-45.
    [10] 马燕, 钮燕, 吴海莺, 吕操, 白忠.  泮托拉唑联合多潘立酮诊断性治疗咽喉反流性疾病疗效观察, 昆明医科大学学报. 2017, 38(04): 98-100.
    [11] 周贵, 舒海燕, 罗江磋, 苏超敏, 宋列席, 刘佳, 杨娇, 王慧玲.  成都市某院HIV传染性疾病监测结果分析, 昆明医科大学学报. 2016, 37(12): 122-126.
    [12] 张洋.  炎症及氧化应激反应在慢性阻塞性肺疾病发病机制中的研究进展, 昆明医科大学学报. 2015, 36(01): -1.
    [13] 王鹏.  MRI动态增强在乳腺良恶性疾病鉴别诊断中的价值, 昆明医科大学学报. 2014, 35(12): -1.
    [14] 周臣群.  怒江州公务员代谢综合征相关疾病发病情况调查分析, 昆明医科大学学报. 2014, 35(06): -.
    [15] 万蓉.  2011年云南省食源性疾病监测情况分析, 昆明医科大学学报. 2012, 33(05): -.
    [16] 乐敬宝.  伞形鼻泪管支架逆行植入泪道治疗鼻泪管阻塞性疾病, 昆明医科大学学报. 2012, 33(04): -.
    [17] 万蓉.  ARIMA乘积季节模型在食源性疾病月发病率预测中的应用, 昆明医科大学学报. 2012, 33(06): -.
    [18] 刘春丽.  微量间歇性超声雾化吸入治疗小儿支气管肺炎, 昆明医科大学学报. 2012, 33(12): -.
    [19] 中西医结合治疗慢性盆腔炎性疾病50例疗效观察, 昆明医科大学学报. 2011, 32(06): -.
    [20] 高频超声在上肢外周神经损伤性疾病的应用价值, 昆明医科大学学报. 2011, 32(06): -.
  • 加载中
计量
  • 文章访问数:  53
  • HTML全文浏览量:  16
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-22
  • 网络出版日期:  2024-12-05

目录

    /

    返回文章
    返回