The Effects of Caloric Restriction and Intermittent Fasting on Inflammation and Metabolic Diseases
-
摘要: 热量限制(Caloric Restriction,CR)和间歇性禁食(Intermittent Fasting,IF)作为2种饮食干预策略,近年来因其在调节炎症和代谢紊乱中的潜在作用受到广泛关注。随着高热量饮食和久坐生活方式的普及,肥胖、2型糖尿病、心血管疾病等代谢性疾病的发病率显著增加,给公共卫生带来了严峻挑战。本综述探讨了CR和IF通过代谢重塑、自噬激活及抑制炎症通路等机制,在减少炎症、改善代谢健康中的作用。特别是在多发性硬化、系统性红斑狼疮等炎症性疾病中,这2种策略表现出显著的干预效果。此外,CR和IF在肥胖、糖尿病及心血管疾病的代谢调节中也有积极作用。尽管它们在临床应用中具有潜力,但长期依从性和安全性仍是推广的关键挑战。未来研究应侧重个性化干预和多治疗手段的联合应用,以进一步验证CR和IF的临床价值。综上所述,CR和IF为慢性疾病管理提供了新的非药物策略,具有重要的应用前景。Abstract: Caloric restriction (CR) and intermittent fasting (IF) are two dietary intervention strategies that have garnered increasing attention for their potential role in regulating inflammation and metabolic disorders. With the widespread adoption of high-calorie diets and sedentary lifestyles, the incidence of metabolic diseases such as obesity, type 2 diabetes, and cardiovascular diseases has risen significantly, posing major public health challenges. This review explores how CR and IF impact inflammation reduction and metabolic health improvement through mechanisms such as metabolic reprogramming, autophagy activation, and inhibition of inflammatory pathways. Notably, both strategies have shown promising intervention effects in inflammatory diseases like multiple sclerosis and systemic lupus erythematosus. Additionally, CR and IF demonstrate positive effects in the metabolic regulation of obesity, diabetes, and cardiovascular diseases. Despite their clinical potential, long-term adherence and safety remain key challenges for widespread implementation. Future research should focus on personalized interventions and the integration of multiple therapeutic approaches to further validate the clinical value of CR and IF. In summary, CR and IF offer novel, non-pharmacological strategies for managing chronic diseases, presenting significant potential for future clinical application.
-
[1] Christ A,Lauterbach M,Latz E. Western Diet and the Immune System: An Inflammatory Connection[J]. Immunity,2019,51(5):794-811. doi: 10.1016/j.immuni.2019.09.020 [2] Christ A,Latz E. The Western lifestyle has lasting effects on metaflammation[J]. Nat Rev Immunol,2019,19(5):267-268. doi: 10.1038/s41577-019-0156-1 [3] Zhou R H,Wang Q,Hu X M,et al. The influence of fasting and caloric restriction on inflammation levels in humans: A protocol for systematic review and meta analysis[J]. Medicine (Baltimore),2021,100(15):e25509. [4] Brogi S,Tabanelli R,Puca S,et al. Intermittent Fasting: Myths,Fakes and Truth on This Dietary Regimen Approach[J]. Foods,2024,13(13):1-44. [5] Procaccini C,de Candia P,Russo C,et al. Caloric restriction for the immunometabolic control of human health[J]. Cardiovasc Res,2024,119(18):2787-2800. doi: 10.1093/cvr/cvad035 [6] Hoong C,Chua M. SGLT2 Inhibitors as Calorie Restriction Mimetics: Insights on Longevity Pathways and Age-Related Diseases[J]. Endocrinology,2021,162(8):1-20. [7] Kokten T,Hansmannel F,Ndiaye N C,et al. Calorie Restriction as a New Treatment of Inflammatory Diseases[J]. Adv Nutr,2021,12(4):1558-1570. doi: 10.1093/advances/nmaa179 [8] Mattson M P,Longo V D,Harvie M. Impact of intermittent fasting on health and disease processes[J]. Ageing Res Rev,2017,39:46-58. doi: 10.1016/j.arr.2016.10.005 [9] Diab R,Dimachkie L,Zein O,et al. Intermittent Fasting Regulates Metabolic Homeostasis and Improves Cardiovascular Health[J]. Cell Biochem Biophys,2024,82(3):1583-1597. [10] Senesi P,Ferrulli A,Luzi L,et al. Diabetes Mellitus and Cardiovascular Diseases: Nutraceutical Interventions Related to Caloric Restriction[J]. Int J Mol Sci,2021,22(15):1-25. [11] Jaramillo A P,Castells J,Ibrahimli S,et al. Time-Restricted Feeding and Intermittent Fasting as Preventive Therapeutics: A Systematic Review of the Literature[J]. Cureus,2023,15(7):e42300. [12] Ferreira-Marques M,Aveleira C A,Carmo-Silva S,et al. Caloric restriction stimulates autophagy in rat cortical neurons through neuropeptide Y and ghrelin receptors activation[J]. Aging (Albany NY),2016,8(7):1470-1484. doi: 10.18632/aging.100996 [13] Lempiainen J,Finckenberg P,Mervaala E E,et al. Caloric restriction ameliorates kidney ischaemia/reperfusion injury through PGC-1alpha-eNOS pathway and enhanced autophagy[J]. Acta Physiol (Oxf),2013,208(4):410-421. doi: 10.1111/apha.12120 [14] Ferreira-Marques M,Carvalho A,Cavadas C,et al. PI3K/AKT/MTOR and ERK1/2-MAPK signaling pathways are involved in autophagy stimulation induced by caloric restriction or caloric restriction mimetics in cortical neurons[J]. Aging (Albany NY),2021,13(6):7872-7882. doi: 10.18632/aging.202805 [15] Eriau E,Paillet J,Kroemer G,et al. Metabolic Reprogramming by Reduced Calorie Intake or Pharmacological Caloric Restriction Mimetics for Improved Cancer Immunotherapy[J]. Cancers (Basel),2021,13(6):1-25. [16] Yan Y,Zhou X E,Xu H E,et al. Structure and Physiological Regulation of AMPK[J]. Int J Mol Sci,2018,19(11):1-15. [17] Browne G J,Finn S G,Proud C G. Stimulation of the AMP-activated protein kinase leads to activation of eukaryotic elongation factor 2 kinase and to its phosphorylation at a novel site,serine 398[J]. J Biol Chem,2004,279(13):12220-12231. doi: 10.1074/jbc.M309773200 [18] Huo Y,Iadevaia V,Yao Z,et al. Stable isotope-labelling analysis of the impact of inhibition of the mammalian target of rapamycin on protein synthesis[J]. Biochem J,2012,444(1):141-151. doi: 10.1042/BJ20112107 [19] Duvel K,Yecies J L,Menon S,et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1[J]. Mol Cell,2010,39(2):171-183. doi: 10.1016/j.molcel.2010.06.022 [20] Mayor E. Neurotrophic effects of intermittent fasting,calorie restriction and exercise: a review and annotated bibliography[J]. Front Aging,2023,4:1161814. doi: 10.3389/fragi.2023.1161814 [21] Elkhwanky M S,Hakkola J. Extranuclear Sirtuins and Metabolic Stress[J]. Antioxid Redox Signal,2018,28(8):662-676. doi: 10.1089/ars.2017.7270 [22] Fagerli E,Escobar I,Ferrier F J,et al. Sirtuins and cognition: implications for learning and memory in neurological disorders[J]. Front Physiol,2022,13:908689. doi: 10.3389/fphys.2022.908689 [23] Zhang S,Sun S,Wei X,et al. Short-term moderate caloric restriction in a high-fat diet alleviates obesity via AMPK/SIRT1 signaling in white adipocytes and liver[J]. Food Nutr Res,2022,66:1-12. [24] Huang J,Dibble C C,Matsuzaki M,et al. The TSC1-TSC2 complex is required for proper activation of mTOR complex 2[J]. Mol Cell Biol,2008,28(12):4104-4115. doi: 10.1128/MCB.00289-08 [25] Zhao Y,Jia M,Chen W,et al. The neuroprotective effects of intermittent fasting on brain aging and neurodegenerative diseases via regulating mitochondrial function[J]. Free Radic Biol Med,2022,182:206-218. doi: 10.1016/j.freeradbiomed.2022.02.021 [26] Watson K,Baar K. mTOR and the health benefits of exercise[J]. Semin Cell Dev Biol,2014,36:130-139. doi: 10.1016/j.semcdb.2014.08.013 [27] Sadria M,Layton A T. Interactions among mTORC,AMPK and SIRT: A computational model for cell energy balance and metabolism[J]. Cell Commun Signal,2021,19(1):1-17. doi: 10.1186/s12964-021-00706-1 [28] Ersahin T,Tuncbag N,Cetin-Atalay R. The PI3K/AKT/mTOR interactive pathway[J]. Mol Biosyst,2015,11(7):1946-1954. doi: 10.1039/C5MB00101C [29] Liu T,Zhang L,Joo D,et al. NF-kappaB signaling in inflammation[J]. Signal Transduct Target Ther,2017,2:17023. doi: 10.1038/sigtrans.2017.23 [30] Vella L,Caldow M K,Larsen A E,et al. Resistance exercise increases NF-kappaB activity in human skeletal muscle[J]. Am J Physiol Regul Integr Comp Physiol,2012,302(6):R667-R673. doi: 10.1152/ajpregu.00336.2011 [31] Mattson M P,Arumugam T V. Hallmarks of Brain Aging: Adaptive and Pathological Modification by Metabolic States[J]. Cell Metab,2018,27(6):1176-1199. doi: 10.1016/j.cmet.2018.05.011 [32] Li G,Xie C,Lu S,et al. Intermittent Fasting Promotes White Adipose Browning and Decreases Obesity by Shaping the Gut Microbiota[J]. Cell Metab,2017,26(4):672-685. doi: 10.1016/j.cmet.2017.08.019 [33] Bosch D B L,Boguna M,Sanchez A,et al. Sex-Dependent Metabolic Effects in Diet-Induced Obese Rats following Intermittent Fasting Compared with Continuous Food Restriction[J]. Nutrients,2024,16(7):1-16. [34] Baumeier C,Kaiser D,Heeren J,et al. Caloric restriction and intermittent fasting alter hepatic lipid droplet proteome and diacylglycerol species and prevent diabetes in NZO mice[J]. Biochim Biophys Acta,2015,1851(5):566-576. doi: 10.1016/j.bbalip.2015.01.013 [35] Rahmani F,Ghezzi L,Tosti V,et al. Twelve Weeks of Intermittent Caloric Restriction Diet Mitigates Neuroinflammation in Midlife Individuals with Multiple Sclerosis: A Pilot Study with Implications for Prevention of Alzheimer's Disease[J]. J Alzheimers Dis,2023,93(1):263-273. doi: 10.3233/JAD-221007 [36] Bai M,Wang Y,Han R,et al. Intermittent caloric restriction with a modified fasting-mimicking diet ameliorates autoimmunity and promotes recovery in a mouse model of multiple sclerosis[J]. J Nutr Biochem,2021,87:108493. doi: 10.1016/j.jnutbio.2020.108493 [37] Zarini D,Pasbakhsh P,Nekoonam S,et al. Protective Features of Calorie Restriction on Cuprizone-induced Demyelination via Modulating Microglial Phenotype[J]. J Chem Neuroanat,2021,116:102013. doi: 10.1016/j.jchemneu.2021.102013 [38] Feng Y,Qin J,Wang P,et al. Intermittent fasting attenuates cognitive dysfunction and systemic disease activity in mice with neuropsychiatric systemic lupus erythematosus[J]. Life Sci,2024,355:122999. doi: 10.1016/j.lfs.2024.122999 [39] Kielmann J,Pucci L,Xydis A. Personalized Nutrition and Lifestyle Interventions in Systemic Lupus Erythematosus: A Case Report[J]. Integr Med (Encinitas),2023,21(6):22-27. [40] Hong S M,Lee J,Jang S G,et al. Intermittent Fasting Aggravates Lupus Nephritis through Increasing Survival and Autophagy of Antibody Secreting Cells in MRL/lpr Mice[J]. Int J Mol Sci,2020,21(22):1-12. [41] Constantin M M,Nita I E,Olteanu R,et al. Significance and impact of dietary factors on systemic lupus erythematosus pathogenesis[J]. Exp Ther Med,2019,17(2):1085-1090. [42] Barati M,Ghahremani A,Namdar A H. Intermittent fasting: A promising dietary intervention for autoimmune diseases[J]. Autoimmun Rev,2023,22(10):103408. doi: 10.1016/j.autrev.2023.103408 [43] Zhang S,Zhong R,Tang S,et al. Metabolic regulation of the Th17/Treg balance in inflammatory bowel disease[J]. Pharmacol Res,2024,203:107184. doi: 10.1016/j.phrs.2024.107184 [44] Song S,Chen L,Bai M,et al. Time-restricted feeding ameliorates dextran sulfate sodium-induced colitis via reducing intestinal inflammation[J]. Front Nutr,2022,9:1043783. doi: 10.3389/fnut.2022.1043783 [45] Ranjbar M,Shab-Bidar S,Rostamian A,et al. The effects of intermittent fasting diet on quality of life,clinical symptoms,inflammation,and oxidative stress in overweight and obese postmenopausal women with rheumatoid arthritis: study protocol of a randomized controlled trial[J]. Trials,2024,25(1):1-12. doi: 10.1186/s13063-024-07977-2 [46] Gunes-Bayir A,Mendes B,Dadak A. The Integral Role of Diets Including Natural Products to Manage Rheumatoid Arthritis: A Narrative Review[J]. Curr Issues Mol Biol,2023,45(7):5373-5388. doi: 10.3390/cimb45070341 [47] Ostendorf D M,Caldwell A E,Zaman A,et al. Comparison of weight loss induced by daily caloric restriction versus intermittent fasting (DRIFT) in individuals with obesity: study protocol for a 52-week randomized clinical trial[J]. Trials,2022,23(1):1-19. doi: 10.1186/s13063-022-06523-2 [48] Catenacci V A,Pan Z,Ostendorf D,et al. A randomized pilot study comparing zero-calorie alternate-day fasting to daily caloric restriction in adults with obesity[J]. Obesity (Silver Spring),2016,24(9):1874-1883. doi: 10.1002/oby.21581 [49] Thomas E A,Zaman A,Sloggett K J,et al. Early time-restricted eating compared with daily caloric restriction: A randomized trial in adults with obesity[J]. Obesity (Silver Spring),2022,30(5):1027-1038. doi: 10.1002/oby.23420 [50] Silverii G A,Cresci B,Benvenuti F,et al. Effectiveness of intermittent fasting for weight loss in individuals with obesity: A meta-analysis of randomized controlled trials[J]. Nutr Metab Cardiovasc Dis,2023,33(8):1481-1489. doi: 10.1016/j.numecd.2023.05.005 [51] Morales-Suarez-Varela M,Collado S E,Peraita-Costa I,et al. Intermittent Fasting and the Possible Benefits in Obesity,Diabetes,and Multiple Sclerosis: A Systematic Review of Randomized Clinical Trials[J]. Nutrients,2021,13(9):1-16. [52] Pratchayasakul W,Arunsak B,Suparan K,et al. Combined caloric restriction and exercise provides greater metabolic and neurocognitive benefits than either as a monotherapy in obesity with or without estrogen deprivation[J]. J Nutr Biochem,2022,110:109125. doi: 10.1016/j.jnutbio.2022.109125 [53] Harris L,Hamilton S,Azevedo L B,et al. Intermittent fasting interventions for treatment of overweight and obesity in adults: A systematic review and meta-analysis[J]. JBI Database System Rev Implement Rep,2018,16(2):507-547. doi: 10.11124/JBISRIR-2016-003248 [54] Zhu S,Surampudi P,Rosharavan B,et al. Intermittent fasting as a nutrition approach against obesity and metabolic disease[J]. Curr Opin Clin Nutr Metab Care,2020,23(6):387-394. doi: 10.1097/MCO.0000000000000694 [55] Silverii G A,Cresci B,Benvenuti F,et al. Effectiveness of intermittent fasting for weight loss in individuals with obesity: A meta-analysis of randomized controlled trials[J]. Nutr Metab Cardiovasc Dis,2023,33(8):1481-1489. doi: 10.1016/j.numecd.2023.05.005 [56] Malinowski B,Zalewska K,Wesierska A,et al. Intermittent Fasting in Cardiovascular Disorders-An Overview[J]. Nutrients,2019,11(3):1-18. [57] Allaf M,Elghazaly H,Mohamed O G,et al. Intermittent fasting for the prevention of cardiovascular disease[J]. Cochrane Database Syst Rev,2021,1(1):D13496. [58] Tinsley G M,Horne B D. Intermittent fasting and cardiovascular disease: Current evidence and unresolved questions[J]. Future Cardiol,2018,14(1):47-54. doi: 10.2217/fca-2017-0038 [59] Abdellatif M,Sedej S. Cardiovascular benefits of intermittent fasting[J]. Cardiovasc Res,2020,116(3):e36-e38. doi: 10.1093/cvr/cvaa022 [60] Ozcan M,Abdellatif M,Javaheri A,et al. Risks and Benefits of Intermittent Fasting for the Aging Cardiovascular System[J]. Can J Cardiol,2024,40(8):1445-1457. doi: 10.1016/j.cjca.2024.02.004 [61] Kern L,Kviatcovsky D,He Y,et al. Impact of caloric restriction on the gut microbiota[J]. Curr Opin Microbiol,2023,73:102287. doi: 10.1016/j.mib.2023.102287 [62] Tanca A,Abbondio M,Palomba A,et al. Caloric restriction promotes functional changes involving short-chain fatty acid biosynthesis in the rat gut microbiota[J]. Sci Rep,2018,8(1):14778. doi: 10.1038/s41598-018-33100-y [63] Gong T,Di H,Hu Y,et al. Gut microbiota and metabolites exhibit different profiles after very-low-caloric restriction in patients with type 2 diabetes[J]. Front Endocrinol (Lausanne),2023,14:1289571. [64] Guo Y,Luo S,Ye Y,et al. Intermittent Fasting Improves Cardiometabolic Risk Factors and Alters Gut Microbiota in Metabolic Syndrome Patients[J]. J Clin Endocrinol Metab,2021,106(1):64-79. doi: 10.1210/clinem/dgaa644 [65] Zhang A,Wang J,Zhao Y,et al. Intermittent fasting,fatty acid metabolism reprogramming,and neuroimmuno microenvironment: mechanisms and application prospects[J]. Front Nutr,2024,11:1485632. doi: 10.3389/fnut.2024.1485632 [66] Sharma A,Anand S K,Singh N,et al. AMP-activated protein kinase: An energy sensor and survival mechanism in the reinstatement of metabolic homeostasis[J]. Exp Cell Res,2023,428(1):113614. doi: 10.1016/j.yexcr.2023.113614 [67] Kolb H,Kempf K,Rohling M,et al. Ketone bodies: from enemy to friend and guardian angel[J]. BMC Med,2021,19(1):1-15. doi: 10.1186/s12916-021-02185-0 [68] Sharma A,Singh A K. Molecular mechanism of caloric restriction mimetics-mediated neuroprotection of age-related neurodegenerative diseases: An emerging therapeutic approach[J]. Biogerontology,2023,24(5):679-708. doi: 10.1007/s10522-023-10045-y [69] Bhoumik S,Kesherwani R,Kumar R,et al. Alternate day fasting and time-restricted feeding may confer similar neuroprotective effects during aging in male rats[J]. Biogerontology,2022,23(6):757-770. doi: 10.1007/s10522-022-09991-w [70] McCarty M F. Nutraceutical and Dietary Strategies for Up-Regulating Macroautophagy[J]. Int J Mol Sci,2022,23(4):1-16.
点击查看大图
计量
- 文章访问数: 53
- HTML全文浏览量: 16
- PDF下载量: 5
- 被引次数: 0