留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

噬菌体联合抗生素疗法的协同作用机制及应用进展

李雪林 杨小燕 韩泽华 陈昱良 徐兴源 张春燕 向盈盈

李雪林, 杨小燕, 韩泽华, 陈昱良, 徐兴源, 张春燕, 向盈盈. 噬菌体联合抗生素疗法的协同作用机制及应用进展[J]. 昆明医科大学学报.
引用本文: 李雪林, 杨小燕, 韩泽华, 陈昱良, 徐兴源, 张春燕, 向盈盈. 噬菌体联合抗生素疗法的协同作用机制及应用进展[J]. 昆明医科大学学报.
Xuelin LI, Xiaoyan YANG, Zehua HAN, Yuliang CHEN, Xingyuan XU, Chunyan ZHANG, Yingying XIANG. Synergistic Mechanisms and Applications of Phage-Antibiotic Combination Therapy[J]. Journal of Kunming Medical University.
Citation: Xuelin LI, Xiaoyan YANG, Zehua HAN, Yuliang CHEN, Xingyuan XU, Chunyan ZHANG, Yingying XIANG. Synergistic Mechanisms and Applications of Phage-Antibiotic Combination Therapy[J]. Journal of Kunming Medical University.

噬菌体联合抗生素疗法的协同作用机制及应用进展

基金项目: 国家自然科学基金(82360189);云南省科技计划项目-昆明医科大学联合专项(202201AC070283);云南省科技厅基础研究计划面上项目(202201AT070954);云南省高层次卫生健康技术人才培养专项经费资助(D2024005)
详细信息
    作者简介:

    李雪林(1999~),女,云南昆明人,在读硕士研究生,主要从事口腔临床工作

    通讯作者:

    向盈盈,E-mail:25591394@qq.com

  • 中图分类号: R978.1;Q939.48

Synergistic Mechanisms and Applications of Phage-Antibiotic Combination Therapy

  • 摘要: 抗生素滥用导致耐药菌迅速增加,细菌感染难以有效控制,对人类健康构成严重威胁。随着抗生素耐药性问题的日益加剧和新抗生素研发滞后,寻找更有效的治疗策略成为全球公共卫生领域的迫切需求。噬菌体作为潜在治疗方案,近年来受到广泛关注,但噬菌体存在宿主范围狭窄、溶源性现象等局限性。噬菌体-抗生素协同作用通过增强噬菌体裂解活性,减少抗生素剂量,显著降低耐药风险,展现出卓越的抗菌效果。综述了噬菌体-抗生素协同作用的机制及研究进展,以期进一步推动噬菌体与抗生素联合疗法的研究与应用,为应对抗生素耐药性问题提供新的解决方案。
  • 图  1  噬菌体-抗生素协同作用机制

    注:(1)噬菌体通过作用于细菌外排泵靶点,恢复细菌对抗生素的敏感性;(2)噬菌体编码的多糖去聚合酶等酶类降解生物膜结构,增强抗生素渗透;(3)β-内酰胺类抗生素干扰青霉素结合蛋白,引起细菌丝状化,增强噬菌体的吸附与裂解效率;(4)抗生素通过激活细菌RecA介导的SOS应答,增强细菌裂解和噬菌体增殖。

    Figure  1.  Synergistic mechanisms of phage–antibiotic therapy

    表  1  临床实践中噬菌体-抗生素的联合治疗

    Table  1.   Phages and antibiotics in clinical practice

    Infection Case presentation Phage Antibiotic Clinical outcome Reference
    1 Multidrug resistant A. baumannii and K. pneumoniae infection A 42-year-old patient with a trauma-related left tibial infection with drug resistant A. baumannii and K. pneumoniae ϕAbKT21phi3 and ϕKpKT21phi1 Meropenem and colistin Rapid tissue healing and positive culture eradication. The patient’s leg did not have to be amputated and he is undergoing rehabilitation
    [35]
    2 Pandrug-resistant K. pneumoniae A 30-year-old patient with a fracture-associated pandrug-resistant K. pneumoniae infection. phage M1 Meropenem and colistin followed by ceftazidime/avibactam The patient regained the ability to walk and resume activities,with no recurrence of Klebsiella pneumoniae infection.
    [36]
    3 Pseudomonas aeruginosa infection A 75-year-old woman with arteriosclerosis and comorbidities developed Pseudomonas aeruginosa infection after femoropopliteal bypass surgery in the right inguinal area. fNenPA2p2、fNenPA2p4 and fGstaPae02 Meropenem Infection markers normalized. PET-CT showed clinical improvement. No further Pseudomonas aeruginosa septicemia occurred during the 10-month follow-up. [37]
    4 Methicillin-Susceptible Staphylococcus Aureus infection A 29-year-old woman with type-1 neurofibromatosis developed an MSSA surgical site infection with a skin fistula one month after ceramic cranioplasty,leading to septic shock and free flap necrosis. two different
    bacteriophages
    Dalbavancin Within two weeks of combination therapy,purulent discharge gradually decreased to no exudate. At 8 months after treatment,the patient remains healthy with no infection recurrence. [38]
    5 multidrug resistant Acinetobacter baumannii (MDR-A) respiratory infection A 52-year-old critically ill patient with MDR A. baumannii respiratory infection A.baumannii phage AbW4878Ø1 Tigecycline、Trimethoprim/sulfametoxazole Successfully treated with antibiotics and intravenous and nebulized PT. [39]


    6
    multidrug resistant (MDR) P. aeruginosa pneumonia infection A 26-year-old cystic fibrosis (CF) patient awaiting lung transplantation with multidrug resistant (MDR) P. aeruginosa pneumonia AB-PA01 iprofloxacin、piperacillin–tazobactam and doripenem No worsening or recurrence of pneumonia and cystic fibrosis within 100 days after phage therapy.
    [40]
    下载: 导出CSV
  • [1] Marshall B M, Levy S B. Food animals and antimicrobials: Impacts on human health[J]. Clin Microbiol Rev, 2011, 24(4): 718-733. doi: 10.1128/CMR.00002-11
    [2] Reygaert W C. An overview of the antimicrobial resistance mechanisms of bacteria[J]. AIMS Microbiol, 2018, 4(3): 482-501. doi: 10.3934/microbiol.2018.3.482
    [3] Gordillo Altamirano F L, Barr J J. Phage therapy in the postantibiotic era[J]. Clin Microbiol Rev, 2019, 32(2): e00066-18.
    [4] Safir M C, Bhavnani S M, Slover C M, et al. Antibacterial drug development: A new approach is needed for the field to survive and thrive[J]. Antibiotics, 2020, 9(7): 412. doi: 10.3390/antibiotics9070412
    [5] Pal N, Sharma P, Kumawat M, et al. Phage therapy: An alternative treatment modality for MDR bacterial infections[J]. Infect Dis, 2024, 56(10): 785-817. doi: 10.1080/23744235.2024.2379492
    [6] Kalia V C, Patel S K S, Gong C, et al. Re-emergence of bacteriophages and their products as antibacterial agents: An overview[J]. Int J Mol Sci, 2025, 26(4): 1755. doi: 10.3390/ijms26041755
    [7] D'Accolti M, Soffritti I, Mazzacane S, et al. Bacteriophages as a Potential 360- D’Accolti M, Soffritti I, Mazzacane S, et al. Bacteriophages as a potential 360-degree pathogen control strategy[J]. Microorganisms, 2021, 9(2): 261. doi: 10.3390/microorganisms9020261
    [8] Diallo K, Dublanchet A. Benefits of combined phage-antibiotic therapy for the control of antibiotic-resistant bacteria: A literature review[J]. Antibiotics, 2022, 11(7): 839. doi: 10.3390/antibiotics11070839
    [9] Li X, He Y, Wang Z, et al. A combination therapy of Phages and Antibiotics: Two is better than one[J]. Int J Biol Sci, 2021, 17(13): 3573-3582. doi: 10.7150/ijbs.60551
    [10] Łusiak-Szelachowska M, Międzybrodzki R, Drulis-Kawa Z, et al. Bacteriophages and antibiotic interactions in clinical practice: What we have learned so far[J]. J Biomed Sci, 2022, 29(1): 23. doi: 10.1186/s12929-022-00806-1
    [11] North O I, Brown E D. Phage-antibiotic combinations: A promising approach to constrain resistance evolution in bacteria[J]. Ann N Y Acad Sci, 2021, 1496(1): 23-34. doi: 10.1111/nyas.14533
    [12] Chan B K, Sistrom M, Wertz J E, et al. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa[J]. Sci Rep, 2016, 6: 26717. doi: 10.1038/srep26717
    [13] Liu N, Lewis C, Zheng W, et al. Phage cocktail therapy: Multiple ways to suppress pathogenicity[J]. Trends Plant Sci, 2020, 25(4): 315-317. doi: 10.1016/j.tplants.2020.01.013
    [14] Kraus S, Fletcher M L, Łapińska U, et al. Phage-induced efflux down-regulation boosts antibiotic efficacy[J]. PLoS Pathog, 2024, 20(6): e1012361. doi: 10.1371/journal.ppat.1012361
    [15] Dickey J, Perrot V. Adjunct phage treatment enhances the effectiveness of low antibiotic concentration against Staphylococcus aureus biofilms in vitro[J]. PLoS One, 2019, 14(1): e0209390. doi: 10.1371/journal.pone.0209390
    [16] Łusiak-Szelachowska M, Weber-Dąbrowska B, Górski A. Bacteriophages and lysins in biofilm control[J]. Virol Sin, 2020, 35(2): 125-133. doi: 10.1007/s12250-019-00192-3
    [17] Bulssico J, PapukashvilI I, Espinosa L, et al. Phage-antibiotic synergy: Cell filamentation is a key driver of successful phage predation[J]. PLoS Pathog, 2023, 19(9): e1011602. doi: 10.1371/journal.ppat.1011602
    [18] Comeau A M, Tétart F, Trojet S N, et al. Phage-Antibiotic Synergy (PAS): Beta-lactam and quinolone antibiotics stimulate virulent phage growth[J]. PLoS One, 2007, 2(8): e799. doi: 10.1371/journal.pone.0000799
    [19] Supina B S I, Dennis J J. The current landscape of phage-antibiotic synergistic (PAS) interactions[J]. Antibiotics, 2025, 14(6): 545. doi: 10.3390/antibiotics14060545
    [20] Nanda A M, Heyer A, Krämer C, et al. Analysis of SOS-induced spontaneous prophage induction in Corynebacterium glutamicum at the single-cell level[J]. J Bacteriol, 2014, 196(1): 180-188. doi: 10.1128/JB.01018-13
    [21] Morris T C, Reyneke B, Khan S, et al. Phage-antibiotic synergy to combat multidrug resistant strains of Gram-negative ESKAPE pathogens[J]. Sci Rep, 2025, 15(1): 17235. doi: 10.1038/s41598-025-01489-y
    [22] Fothergill J L, Mowat E, Walshaw M J, et al. Effect of antibiotic treatment on bacteriophage production by a cystic fibrosis epidemic strain of Pseudomonas aeruginosa[J]. Antimicrob Agents Chemother, 2011, 55(1): 426-428. doi: 10.1128/AAC.01257-10
    [23] Goerke C, Köller J, Wolz C. Ciprofloxacin and trimethoprim cause phage induction and virulence modulation in Staphylococcus aureus[J]. Antimicrob Agents Chemother, 2006, 50(1): 171-177. doi: 10.1128/AAC.50.1.171-177.2006
    [24] Kim M, Jo Y, Hwang Y J, et al. Phage-antibiotic synergy via delayed lysis[J]. Appl Environ Microbiol, 2018, 84(22): e02085-18.
    [25] Ghatbale P, Sah G P, Dunham S, et al. In vitro resensitization of multidrug-resistant clinical isolates of Enterococcus faecium and E. faecalis through phage-antibiotic synergy[J]. Antimicrobial Agents and Chemotherapy, 2025, 69(2): e00740-24.
    [26] 曾堃. 耐药粪肠球菌致根尖周炎的噬菌体-抗生素联合治疗研究[D]. 昆明: 昆明理工大学, 2024.
    [27] Orozco-Ochoa A K, González-Gómez J P, Quiñones B, et al. Bacteriophage Indie resensitizes multidrug-resistant Acinetobacter baumannii to antibiotics in vitro[J]. Sci Rep, 2025, 15(1): 11578. doi: 10.1038/s41598-025-96669-1
    [28] Fatima R, Hynes A P. Temperate phage-antibiotic synergy is widespread-extending to Pseudomonas-but varies by phage, host strain, and antibiotic pairing[J]. mBio, 2025, 16(2): e0255924. doi: 10.1128/mbio.02559-24
    [29] Kumaran D, Taha M, Yi Q, et al. Does treatment order matter investigating the ability of bacteriophage to augment antibiotic activity against Staphylococcus aureus biofilms[J]. Front Microbiol, 2018, 9: 127. doi: 10.3389/fmicb.2018.00127
    [30] Alharbi M G, Al-Hindi R R, Alotibi I A, et al. Evaluation of phage-antibiotic combinations in the treatment of extended-spectrum β-lactamase-producing Salmonella enteritidis strain PT1[J]. Heliyon, 2023, 9(1): e13077. doi: 10.1016/j.heliyon.2023.e13077
    [31] Yehia F A A, Yahya G, Elsayed E M, et al. From isolation to application: Utilising phage-antibiotic synergy in murine bacteremia model to combat multidrug-resistant Enterococcus faecalis[J]. Microb Biotechnol, 2025, 18(1): e70075. doi: 10.1111/1751-7915.70075
    [32] Lin LC, Tsai YC, Lin NT. Phage-Antibiotic Synergy Enhances Biofilm Eradication and Survival in a Zebrafish Model of Pseudomonas aeruginosa Infection Cejuela M, Martin-Castillo B, Menendez J A, et al. ◆◆◆已被撤稿, 建议弃引◆◆◆RETRACTED: Cejuela et al. metformin and breast cancer: Where are we now int. J. mol. sci. 2022, 23, 2705[J]. Int J Mol Sci, 2025, 26(11): 5407.
    [33] Zhao M, Li H, Gan D, et al. Antibacterial effect of phage cocktails and phage-antibiotic synergy against pathogenic Klebsiella pneumoniae[J]. mSystems, 2024, 9(9): e0060724. doi: 10.1128/msystems.00607-24
    [34] Rao S, Betancourt-Garcia M, Kare-Opaneye Y O, et al. Critically ill patient with multidrug-resistant Acinetobacter baumannii respiratory infection successfully treated with intravenous and nebulized bacteriophage therapy[J]. Antimicrob Agents Chemother, 2022, 66(1): e00824-21.
    [35] Eskenazi A, Lood C, Wubbolts J, et al. Combination of pre-adapted bacteriophage therapy and antibiotics for treatment of fracture-related infection due to pandrug-resistant Klebsiella pneumoniae[J]. Nat Commun, 2022, 13(1): 302. doi: 10.1038/s41467-021-27656-z
    [36] Otava U E, Tervo L, Havela R, et al. Phage-antibiotic combination therapy against recurrent Pseudomonas Septicaemia in a patient with an arterial stent[J]. Antibiotics, 2024, 13(10): 916. doi: 10.3390/antibiotics13100916
    [37] Bleibtreu A, Fevre C, Robert J, et al. Combining bacteriophages and dalbavancin for salvage therapy of complex Staphylococcus aureus extradural empyema[J]. Med Mal Infect, 2020, 50(5): 458-459. doi: 10.1016/j.medmal.2020.02.004
    [38] Rao S, Betancourt-Garcia M, Kare-Opaneye Y O, et al. Critically ill patient with multidrug-resistant Acinetobacter baumannii respiratory infection successfully treated with intravenous and nebulized bacteriophage therapy[J]. Antimicrob Agents Chemother, 2022, 66(1): e00824-21.
    [39] Law N, Logan C, Yung G, et al. Successful adjunctive use of bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa infection in a cystic fibrosis patient[J]. Infection, 2019, 47(4): 665-668. doi: 10.1007/s15010-019-01319-0
    [40] Rao G G, Vallé Q, Mahadevan R, et al. Crossing the chasm: How to approach translational pharmacokinetic-pharmacodynamic modeling of phage dosing[J]. Clin Pharmacol Ther, 2025, 117(1): 94-105. doi: 10.1002/cpt.3426
    [41] Kim M K, Chen Q, Echterhof A, et al. A blueprint for broadly effective bacteriophage-antibiotic cocktails against bacterial infections[J]. Nat Commun, 2024, 15(1): 9987. doi: 10.1038/s41467-024-53994-9
    [42] Dedrick R M, Guerrero-Bustamante C A, Garlena R A, et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus[J]. Nat Med, 2019, 25(5): 730-733. doi: 10.1038/s41591-019-0437-z
    [43] Hibstu Z, Belew H, Akelew Y, et al. Phage therapy: A different approach to fight bacterial infections[J]. Biologics, 2022, 16: 173-186.
    [44] Rahimian M, Jafari-Gharabaghlou D, Mohammadi E, et al. A new insight into phage combination therapeutic approaches against drug-resistant mixed bacterial infections[J]. Phage, 2024, 5(4): 203-222. doi: 10.1089/phage.2024.0011
  • [1] 韦秋琦, 赵文倩, 刘凌.  伐尼克兰联合尼古丁贴剂治疗烟草依赖的研究进展, 昆明医科大学学报. 2025, 46(4): 157-162. doi: 10.12259/j.issn.2095-610X.S20250421
    [2] 黄浩, 李雪林, 韩泽华, 常琳, 朱鹏飞, 向盈盈.  噬菌体在口腔常见感染性疾病中的研究及应用, 昆明医科大学学报. 2025, 46(1): 148-153. doi: 10.12259/j.issn.2095-610X.S20250122
    [3] 孙娅红, 杨晓钰, 郑瑞.  噬菌体治疗碳青霉烯类耐药肺炎克雷伯菌感染研究进展与挑战, 昆明医科大学学报. 2025, 46(6): 163-170. doi: 10.12259/j.issn.2095-610X.S20250621
    [4] 金晓媚, 何杰艳, 施吉昌, 邢辉, 王洪, 张桔, 董莉娟, 黄丽花, 陈敏, 陈志娟, 陈会超.  大理白族自治州2018年HIV/AIDS病毒基因型和抗病毒治疗前耐药研究, 昆明医科大学学报. 2023, 44(11): 152-157. doi: 10.12259/j.issn.2095-610X.S20231123
    [5] 王双双, 李亚玲, 陈丽琴, 韩永慧, 麻明彪, 李小娟.  儿童重症监护病区CRE感染的危险因素及耐药情况分析, 昆明医科大学学报. 2023, 44(9): 49-54. doi: 10.12259/j.issn.2095-610X.S20230918
    [6] 余婷婷, 王红英, 张润武, 白经, 普冬, 李冬玲.  昆明地区1 452例低病毒载量慢乙肝患者耐药突变相关位点的分析, 昆明医科大学学报. 2022, 43(9): 43-47. doi: 10.12259/j.issn.2095-610X.S20220927
    [7] 余婷婷, 李冬玲, 王红英, 李丽华, 普冬, 武昆利.  昆明地区艾滋初治病例感染、免疫及耐药情况调查, 昆明医科大学学报. 2022, 43(1): 138-143. doi: 10.12259/j.issn.2095-610X.S20220133
    [8] 陈连勇, 茹浩浩, 杨星, 闫双群, 陈涛, 倪沁璇, 许琳.  云南省异烟肼耐药结核分枝杆菌katG和inhA基因突变特征, 昆明医科大学学报. 2022, 43(8): 28-33. doi: 10.12259/j.issn.2095-610X.S20220803
    [9] 顾津伊, 邓德耀, 袁文丽, 杨秋萍, 宋健梅, 沈彦均, 郭媛媛, 徐红云.  2014年~2020年鲍曼不动杆菌的临床分布及耐药性分析, 昆明医科大学学报. 2022, 43(5): 83-87. doi: 10.12259/j.issn.2095-610X.S20220504
    [10] 杨镕羽, 宋飞, 魏云林, 杨向红, 段开文, 向盈盈.  不同富集培养方法对噬菌体PEf771的滴度影响, 昆明医科大学学报. 2022, 43(2): 7-11. doi: 10.12259/j.issn.2095-610X.S20220218
    [11] 周灵, 胡凤娣, 李蓉, 廖冶丹, 耿证琴, 唐嘉黛, 张雪琪, 谢琳, 杨祚璋.  预测骨肉瘤化疗耐药的临床评分系统, 昆明医科大学学报. 2021, 42(1): 29-37. doi: 10.12259/j.issn.2095-610X.S20210144
    [12] 孙文婧, 胡曼婷, 李娜, 葛菲, 陈文林, 刘洋.  乳腺癌内分泌治疗耐药及其逆转的研究进展, 昆明医科大学学报. 2021, 42(7): 143-149. doi: 10.12259/j.issn.2095-610X.S20210724
    [13] 陈舒旗, 赵芃, 尹革芬, 肖霞, 李燕.  One Heath视角下昆明市高年级本科生抗生素认知与行为, 昆明医科大学学报. 2021, 42(10): 45-50. doi: 10.12259/j.issn.2095-610X.S20211003
    [14] 李晓琴, 周敏, 王霖, 曾海燕, 骆鹏举, 林丽佳.  PCR-反向点杂交法耐药基因检测和BD960结核菌药敏在耐药结核病检测中的应用价值, 昆明医科大学学报. 2020, 41(12): 138-141. doi: 10.12259/j.issn.2095-610X.S20201238
    [15] 陈连勇.  279株结核分枝杆菌耐药情况分析, 昆明医科大学学报. 2014, 35(01): -1.
    [16] 代薇.  昆明地区幽门螺杆菌耐药情况分析, 昆明医科大学学报. 2014, 35(04): -.
    [17] 吴高莉.  噬菌体鉴定食品中沙门菌污染情况调查分析, 昆明医科大学学报. 2013, 34(11): -.
    [18] 华鹏.  云南省第三人民医院病原学标本耐药情况分析, 昆明医科大学学报. 2012, 33(04): -.
    [19] 878株鲍曼不动杆菌的耐药分析及流行调查, 昆明医科大学学报. 2011, 32(09): -.
    [20] 2009年楚雄州人民医院病原菌分布及耐药性分析, 昆明医科大学学报. 2011, 32(04): -.
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  44
  • HTML全文浏览量:  23
  • PDF下载量:  1
  • 被引次数: 0
出版历程

目录

    /

    返回文章
    返回