Gastrodin Ameliorates Maternal-Fetal Interface Injury in Gestational Diabetes Mellitus Rats by Activating the GPR120/AMPK Pathway
-
摘要:
目的 探究天麻素对妊娠期糖尿病(GDM)大鼠母胎界面脂毒性损伤的作用及机制。 方法 采用腹腔注射链脲佐菌素法构建GDM大鼠模型,30只妊娠大鼠随机分为模型组、天麻素组(100 mg/kg)和天麻素(100 mg/kg)+G蛋白偶联受体120(GPR120)拮抗剂AH7614(25 mg/kg)组,每组10只。另取10只妊娠大鼠作为对照组。各组腹腔注射或灌胃相应药物,每天1次连续至妊娠第20天。检测血清空腹血糖(FBG)、游离脂肪酸(FFA)、总胆固醇(TC)、甘油三酯(TG)水平及母体体质量、胎鼠存活率;ELISA、免疫组化法分别检测血清及母胎界面组织TNF-α、IL-1β水平;流式细胞术检测母胎界面组织中细胞凋亡水平;免疫双荧光法检测母胎界面组织GPR120、腺苷酸活化蛋白激酶(AMPK)蛋白分布及表达;Western blot法检测母胎界面组织GPR120、AMPK、磷酸化AMPK(p-AMPK)蛋白表达。 结果 与对照组比较,模型组大鼠血清FBG、FFA、TC、TG、TNF-α、IL-1β,母体体质量,母胎界面组织TNF-α、IL-1β、细胞凋亡水平均升高(P < 0.05);胎鼠存活率,母胎界面组织GPR120、p-AMPK/AMPK水平均降低(P < 0.05)。与模型组比较,天麻素组大鼠血清FBG、FFA、TC、TG、TNF-α、IL-1β,母体体质量,母胎界面组织TNF-α、IL-1β、细胞凋亡水平均降低(P < 0.05);胎鼠存活率,母胎界面组织GPR120、p-AMPK/AMPK水平均升高(P < 0.05)。AH7614可减轻天麻素对GDM大鼠的改善作用(P < 0.05)。 结论 天麻素可改善GDM大鼠糖脂代谢、肥胖及不良妊娠结局,抑制母胎界面炎症和细胞凋亡,其作用机制可能与激活GPR120/AMPK通路有关。 Abstract:Objective To investigate the effects and mechanisms of gastrodin on lipotoxicity damage at the maternal-fetal interface in rats with gestational diabetes mellitus (GDM). Methods A GDM rat model was established using intraperitoneal injection of streptozotocin. Thirty pregnant rats were randomly divided into three groups: model group, gastrodin group (100 mg/kg), and gastrodin (100 mg/kg) + G protein-coupled receptor 120 (GPR120) antagonist AH7614 (25 mg/kg) group. An additional 10 pregnant rats were used as a control group. Each group received intraperitoneal injection or gavage of corresponding drugs once daily until the 20th day of pregnancy. Serum fasting blood glucose (FBG), free fatty acids (FFA), total cholesterol (TC), and triglycerides (TG) levels, as well as maternal body weight and fetal survival rate, were measured. ELISA and immunohistochemistry were used to measure serum and maternal-fetal interface tissue TNF-α and IL-1β levels. Flow cytometry was used to detect cell apoptosis in maternal-fetal interface tissue. Immunofluorescence was used to detect GPR120 and adenosine monophosphate-activated protein kinase (AMPK) protein distribution and expression. Western blot was used to detect GPR120, AMPK, and phosphorylated AMPK (p-AMPK) protein expression in maternal-fetal interface tissue. Results Compared with the control group, the model group showed significantly increased serum FBG, FFA, TC, TG, TNF-α, and IL-1β, maternal body weight, maternal-fetal interface tissue TNF-α, IL-1β, and cell apoptosis levels (P < 0.05), while fetal rat survival rate and maternal-fetal interface tissue GPR120 and p-AMPK/AMPK levels were significantly decreased (P < 0.05). Compared with the model group, the gastrodin group showed significantly decreased serum FBG, FFA, TC, TG, TNF-α, and IL-1β, maternal body weight, maternal-fetal interface tissue TNF-α, IL-1β, and cell apoptosis levels(P < 0.05), while fetal rat survival rate and maternal-fetal interface tissue GPR120 and p-AMPK/AMPK levels were significantly increased (P < 0.05). AH7614 attenuated the beneficial effects of gastrodin on GDM rats (P < 0.05). Conclusion Gastrodin can improve glucose and lipid metabolism, obesity, and adverse pregnancy outcomes in GDM rats, inhibit inflammation and apoptosis at the maternal-fetal interface, and its mechanism may be related to the activation of the GPR120/AMPK pathway. -
表 1 各组大鼠糖脂代谢指标水平比较(n = 10,$ \bar x \pm s $)
Table 1. Comparison of glucose and lipid metabolism indices among different rat groups (n = 10,$ \bar x \pm s $)
组别 FBG(mmol/L) FFA(mmol/L) TC(mmol/L) TG(mmol/L) 对照组 5.25 ± 0.52 6.33 ± 0.73 1.24 ± 0.14 0.48 ± 0.07 模型组 20.01 ± 1.43a 0.85 ± 0.06a 5.36 ± 0.36a 1.76 ± 0.11a 天麻素组 8.37 ± 1.21b 1.92 ± 0.15b 1.71 ± 0.25b 0.63 ± 0.06b 天麻素+AH7614组 14.74 ± 1.44c 5.15 ± 0.38c 4.34 ± 0.42c 1.09 ± 0.28c F 297.9 382.1 410.4 132.2 P <0.001* <0.001* <0.001* <0.001* *P < 0.05;与对照组比较,aP < 0.05;与模型组比较,bP < 0.05;与天麻素组比较,cP < 0.05。 表 2 各组大鼠母体体质量和胎鼠存活率比较(n = 10,$ \bar x \pm s $)
Table 2. Comparison of maternal body weight and fetal survival rate among different rat groups(n = 10,$ \bar x \pm s $)
组别 母体体质量(g) 胎鼠存活率(%) 对照组 310.40 ± 15.51 96.48 ± 2.90 模型组 375.30 ± 18.61a 64.42 ± 2.14a 天麻素组 315.10 ± 5.61b 91.17 ± 6.51b 天麻素+AH7614组 361.20 ± 14.71c 71.94 ± 3.35c F 50.95 140.3 P <0.001* <0.001* *P < 0.05;与对照组比较,aP < 0.05;与模型组比较,bP < 0.05;与天麻素组比较,cP < 0.05。 表 3 各组大鼠血清TNF-α、IL-1β水平比较(n = 10,$ \bar x \pm s $)
Table 3. Comparison of serum TNF-α and IL-1β levels among different rat groups (n = 10,$ \bar x \pm s $)
组别 TNF-α(pg/mL) IL-1β(pg/mL) 对照组 17.69 ± 2.39 10.24 ± 0.14 模型组 78.64 ± 7.63a 33.01 ± 2.93a 天麻素组 33.70 ± 4.05b 18.00 ± 26.87b 天麻素+AH7614组 66.60 ± 7.70c 26.87 ± 2.44c F 229.3 227.0 P <0.001* <0.001* 与对照组比较,aP < 0.05;与模型组比较,bP < 0.05;与天麻素组比较,cP < 0.05;*P < 0.05。 表 4 各组大鼠母胎界面组织TNF-α、IL-1β蛋白表达比较(n = 10,$ \bar x \pm s $)
Table 4. Comparison of TNF-α and IL-1β protein expression in maternal–fetal interface tissues among the groups in rats (n = 10,$ \bar x \pm s $)
组别 TNF-α(%) IL-1β(%) 对照组 6.52 ± 1.49 3.77 ± 1.24 模型组 37.65 ± 7.08a 68.12 ± 9.87a 天麻素组 12.05 ± 2.47b 14.20 ± 3.28b 天麻素+AH7614组 27.37 ± 4.88c 45.30 ± 8.52c F 98.46 189.7 P <0.001* <0.001* *P < 0.05;与对照组比较,aP < 0.05;与模型组比较,bP < 0.05;与天麻素组比较,cP < 0.05。 表 5 各组大鼠母胎界面组织细胞凋亡率比较(n = 10,$ \bar x \pm s $)
Table 5. Comparison of the apoptosis rate in the maternal–fetal interface tissues among different rat groups(n = 10,$ \bar x \pm s $)
组别 细胞凋亡率(%) 对照组 5.02 ± 0.83 模型组 32.50 ± 3.27a 天麻素组 15.24 ± 3.95b 天麻素+AH7614组 24.66 ± 3.86c F 134.8 P <0.001* *P < 0.05;与对照组比较,aP < 0.05;与模型组比较,bP < 0.05;与天麻素组比较,cP < 0.05。 表 6 各组大鼠母胎界面组织GPR120、AMPK阳性率比较(n = 10,$ \bar x \pm s $)
Table 6. Comparison of the positive rates of GPR120 and AMPK in the maternal–fetal interface tissues among the groups in rats (n = 10,$ \bar x \pm s $)
组别 GPR120(%) AMPK(%) 对照组 44.97 ± 5.16 52.58 ± 4.05 模型组 6.66 ± 1.20a 51.65 ± 5.00 天麻素组 24.76 ± 4.30b 48.39 ± 3.21 天麻素+AH7614组 18.65 ± 2.32c 48.00 ± 4.68 F 197.8 2.876 P <0.001* 0.049* *P < 0.05;与对照组比较,aP < 0.05;与模型组比较,bP < 0.05;与天麻素组比较,cP < 0.05。 表 7 各组大鼠母胎界面组织GPR120、p-AMPK/AMPK蛋白表达水平比较(n = 10,$ \bar x \pm s $)
Table 7. Comparison of GPR120 and p-AMPK/AMPK protein expression levels in the maternal–fetal interface tissues among different rat groups(n = 10,$ \bar x \pm s $)
组别 GPR120 p-AMPK/AMPK 对照组 0.69 ± 0.04 1.00 ± 0.07 模型组 0.14 ± 0.02a 0.22 ± 0.02a 天麻素组 0.65 ± 0.07b 1.03 ± 0.10b 天麻素+AH7614组 0.23 ± 0.02c 0.20 ± 0.04c F 415.4 501.4 P <0.001* <0.001* *P < 0.05;与对照组比较,aP < 0.05;与模型组比较,bP < 0.05;与天麻素组比较,cP < 0.05。 -
[1] 胡桂风, 张志佳, 蒲丛珊, 等. 基于专业培训的同伴教育在妊娠期糖尿病患者中的应用研究[J]. 中华护理杂志, 2025, 60(4): 425-432. [2] 韩炜, 唐成和. 母亲妊娠期糖尿病对胎儿结局影响的研究进展[J]. 中华实用儿科临床杂志, 2022, 37(14): 1117-1120. [3] Di Petrillo A, Kumar A, Onali S, et al. GPR120/FFAR4: A potential new therapeutic target for inflammatory bowel disease[J]. Inflamm Bowel Dis, 2023, 29(12): 1981-1989. doi: 10.1093/ibd/izad161 [4] He Q, Lin M, Wu Z, et al. Predictive value of first-trimester GPR120 levels in gestational diabetes mellitus[J]. Front Endocrinol (Lausanne), 2023, 14(1): 1220472. [5] Gao Q, Zhang K, Fan M, et al. Carbohydrate deprivation improves glycolipid metabolism and activates AMPK/PGC1α signaling pathway in mice[J]. Mol Nutr Food Res, 2025, 8(1): e70123. [6] 陈俊芳, 王霞, 姚霞, 等. 橄榄苦苷通过激活AMPK信号通路缓解小鼠妊娠糖尿病[J]. 世界科学技术-中医药现代化, 2023, 25(7): 2621-2627. [7] 张静怡, 李风兰. 天麻素改善糖尿病及其并发症的研究进展[J]. 实用药物与临床, 2022, 25(6): 553-556. [8] 曲娜, 张凯, 那丽莎, 等. 柠檬苦素对妊娠期糖尿病大鼠肾脏病变及糖代谢、炎症和氧化应激的影响及机制[J]. 中国药房, 2025, 36(9): 1082-1086. [9] 杨旋, 张文娟, 夏丽. 天麻素调控Notch通路对妊娠期高血压大鼠胎盘血管生成及妊娠结局的影响[J]. 中国妇产科临床杂志, 2025, 26(2): 139-143. [10] Yamamoto Y, Narumi K, Yamagishi N, et al. Oral administration of linoleic acid immediately before glucose load ameliorates postprandial hyperglycemia[J]. Front Pharmacol, 2023, 14(1): 1197743. [11] Moon J H, Jang H C. Gestational diabetes mellitus: Diagnostic approaches and maternal-offspring complications[J]. Diabetes Metab J, 2022, 46(1): 3-14. doi: 10.4093/dmj.2021.0335 [12] Mu J, Guo X, Zhou Y, et al. The effects of probiotics/synbiotics on glucose and lipid metabolism in women with gestational diabetes mellitus: A meta-analysis of randomized controlled trials[J]. Nutrients, 2023, 15(6): 1375. doi: 10.3390/nu15061375 [13] Liao M, Sun C, Li R, et al. Amelioration action of gastrodigenin rhamno-pyranoside from Moringa seeds on non-alcoholic fatty liver disease[J]. Food Chem, 2022, 379(1): 132087. [14] Zhang M, Zhang Y, He J, et al. Gastrodin attenuates diabetic cardiomyopathy characterized by myocardial fibrosis by inhibiting the KLK8-PAR1 signaling axis[J]. Chin Med, 2024, 19(1): 164. doi: 10.1186/s13020-024-01035-4 [15] Saucedo R, Ortega-Camarillo C, Ferreira-Hermosillo A, et al. Role of oxidative stress and inflammation in gestational diabetes mellitus[J]. Antioxidants (Basel), 2023, 12(10): 1812. doi: 10.3390/antiox12101812 [16] Wang W, Wang Y, Wang F, et al. Gastrodin regulates the TLR4/TRAF6/NF-κB pathway to reduce neuroinflammation and microglial activation in an AD model[J]. Phytomedicine, 2024, 128(1): 155518. [17] Chen L, Lv Y, Wu H, et al. Gastrodin exerts perioperative myocardial protection by improving mitophagy through the PINK1/Parkin pathway to reduce myocardial ischemia-reperfusion injury[J]. Phytomedicine, 2024, 133(1): 155900. [18] Jiang S, Liu H, Li C. Dietary regulation of oxidative stress in chronic metabolic diseases[J]. Foods, 2021, 10(8): 1854. doi: 10.3390/foods10081854 [19] Zhang L, Yu X, Wu Y, et al. Gestational diabetes mellitus-associated hyperglycemia impairs glucose transporter 3 trafficking in trophoblasts through the downregulation of AMP-activated protein kinase[J]. Front Cell Dev Biol, 2021, 9(1): 722024. [20] Wang J, Huang Z, Cao Z, et al. Loureirin B reduces insulin resistance and chronic inflammation in a rat model of polycystic ovary syndrome by upregulating GPR120 and activating the LKB1/AMPK signaling pathway[J]. Int J Mol Sci, 2024, 25(20): 11146. doi: 10.3390/ijms252011146 -