留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于生物信息学分析MX1、IFI44STAT1在狼疮性肾炎中的作用

崔道林 陈春丽 周正宏 龚蕾

崔道林, 陈春丽, 周正宏, 龚蕾. 基于生物信息学分析MX1、IFI44和STAT1在狼疮性肾炎中的作用[J]. 昆明医科大学学报.
引用本文: 崔道林, 陈春丽, 周正宏, 龚蕾. 基于生物信息学分析MX1、IFI44STAT1在狼疮性肾炎中的作用[J]. 昆明医科大学学报.
Daolin CUI, Chunli CHEN, Zhenghong ZHOU, Lei GONG. Bioinformatics-Based Analysis of the Roles of MX1,IFI44, and STAT1 in Lupus Nephritis[J]. Journal of Kunming Medical University.
Citation: Daolin CUI, Chunli CHEN, Zhenghong ZHOU, Lei GONG. Bioinformatics-Based Analysis of the Roles of MX1IFI44, and STAT1 in Lupus Nephritis[J]. Journal of Kunming Medical University.

基于生物信息学分析MX1、IFI44STAT1在狼疮性肾炎中的作用

基金项目: 云南省教育厅科学研究基金资助项目(2023J1760);曲靖医学高等专科学校大学生科技创新资助项目(2024DZ004)
详细信息
    作者简介:

    崔道林(1979~ ),男,山东成武人,理学硕士,副教授,主要从事狼疮肾炎研究工作

    通讯作者:

    龚蕾,E-mail:yngonglei@163.com

  • 中图分类号: R392.9

Bioinformatics-Based Analysis of the Roles of MX1IFI44, and STAT1 in Lupus Nephritis

  • 摘要:   目的  旨在筛选与LN相关的潜在生物标志物,以期用于早期诊断、病情监测和更精准的治疗方案制定。  方法  从基因表达谱数据库(gene expression omnibus,GEO)下载了GSE22221、GSE112943、GSE99967和GSE32591的基因表达数据。通过加权基因共表达网络分析(weighted gene co-expression network analysis,WGCNA)和微阵列数据的线性模型(linear models for microarray data,LIMMA),获得了交集基因。随后,利用基因本体论(gene ontology,GO)和京都基因与基因组百科全书(kyoto encyclopedia of genes and genomes,KEGG)对这些交集基因进行了生物功能和信号通路分析。接着,通过蛋白质-蛋白质相互作用(protein-protein interaction,PPI)网络分析、CytoHubba算法、支持向量机(support vector machine,SVM)和随机森林(random forest,RF)方法,筛选出了与LN高度相关的枢纽基因,进行了受试者工作特征曲线(receiver operating characteristic,ROC)分析,并利用GSE72798数据集对3个潜在的生物标志物进行了验证。  结果   WGCNA分析获得绿黄色模块(P = 7.4e−40)和青色模块(P = 1.5e−14);利用LIMMA法筛选到193个差异表达基因;共鉴定出113个LN相关的交集基因,GO和KEGG分析显示这些基因主要富集在病毒或细菌的防御、I型干扰素信号途径、中性粒细胞介导的免疫和Toll样受体信号等方面。通过CytoHubba、SVM和RF 3种方法筛选出MX1、IFI44STAT1,其曲线下的面积(area under the curve,AUC)分别为0.874、0.879和0.833。验证数据集显示,MX1、IFI44STAT1在LN患者中的表达显著高于健康人群(P < 0.001)。  结论   MX1、IFI44STAT1在LN的发病机制中起到了关键作用,可能成为LN的重要生物标志物和未来的潜在治疗靶点。
  • 图  1  整体研究设计

    Figure  1.  Overall research design

    图  2  多基因芯片联合分析

    A:矫正前分析;B:矫正后分析。

    Figure  2.  Multi-gene chip combined analysis

    图  3  构建WGCNA网络

    A:LN 共表达模块中 power 值筛选;B:模块特征基因与样本特征向量之间的皮尔逊相关系数;C:筛选 LN 的共同表达模块;D:黄绿模块和基因重要性之间的相关性,cor表示 基因显著性(gene significance,GS)和模块成员(module membership,MM)之间的绝对相关系数;E:蓝绿模块和基因重要性之间的相关性,cor表示 GS 和 MM 之间的绝对相关系数。

    Figure  3.  Construction of the WGCNA network

    图  4  WGCNA 和 DEGs 的交集基因

    Figure  4.  Intersection genes of WGCNA and DEGs

    图  5  筛选枢纽基因

    A:交集基因的蛋白质互作网络;B:由蛋白质互作网络分析确定的10个拓扑算法的UpSet图;C~D:使用SVM-RFE算法筛选SVM基因;E~F:从交集基因里筛选RandomForest基因及其重要性分析;G:韦恩图显示了3种方法获得的中枢基因的交集。

    Figure  5.  Screening of hub genes

    图  6  验证枢纽基因

    A:IFI44、MX1STAT1表达水平的ROC曲线;B:IFI44、MX1STAT1在验证集中的相对表达量。***P < 0.001。

    Figure  6.  Validation of hub genes

    表  1  实验数据集信息

    Table  1.   Experimental dataset information

    基因芯片 注释平台 LN患者(n 正常人(n 分组信息/组 数据来源
    GSE22221 GPL10558 15 25 训练 Morris A C,et al[12]
    GSE112943 GPL10558 14 7 训练 Ko W C,et al[13]
    GSE99967 GPL21970 29 17 训练 Wither J E,et al[14]
    GSE32591 GPL14663 64 29 训练 Berthier C C,et al[15]
    GSE72798 GPL570 30 10 验证 Ducreux J,et al[16]
    下载: 导出CSV

    表  2  正常组与LN患者差异基因

    Table  2.   Differential genes between normal group and LN patients

    差异基因
    上调基因IFI27,IFI44L,IFI44,MX1,LTF,RSAD2,CD163,HERC5,PLSCR1,OAS3,IFIT3,OAS1,OAS2,IFI6,IFIT1,LY96,MX2,HERC6,CREG1,SIGLEC1,EIF2AK2,CEACAM8,C1QB,IFITM1,IFIH1,IFIT2,DDX60,DYSF,ELANE,DEFA4,ABCA1,XAF1,IFITM3,TRIM22,ISG15,LCN2,RNASE6,OLFM4,APOBEC3A,IFI35,RNASE1,VSIG4,MMP9,DHX58,RNASE2,TOP2A,TLR2,LYN,HCK,HBD,MMP8,IRF7,ISG20,ZCCHC2,OLR1,CDC20,GBP2,MS4A4A,DDX58,CCL2,RRM2,SPATS2L,LHFPL2,GBP1,CTSG,CEACAM1,STAT1,CD38,ENTPD1,UBE2J1,TCN2,CXCL10,RTP4,FCER1G,TYMS,B4GALT5,CCNA2,RP2,C3AR1,SAMD9,YIPF6,CARHSP1,TAP1,IFI30,LGALS3BP,TRIM21,FAR2,STIL,PARP12,MFGE8,RNASE3,H2AFZ,CEACAM6,LAP3,YWHAH,GMPR,RIN2,SCARB2,LMNB1,MPO,LCP1,BPGM,TLR4,PRC1,LY6E,CFD,MS4A6A,TPX2,XK,LRRC32,SH3GLB1,TGM2CTSS,OASL,COL1A2,GINS2,ANP32B,ADAR,RAPGEF5,LYZ,MARCKS,HMGB2,ATP6V1D,SP100,FAM46C,CAMP,COL4A1,TMEM140,ANXA3,FCN1,NETO2,MYOF,EVI2A,FUT4,DNAJC13,CD36,IFI16,POU2AF1,SAMSN1,TCN1,MR1,MNDA,GIMAP4,PRCP,NFE2,CA1,STAT2,PPP1R3D,TACC3,SLPI,C1QA,S100A8,NMI,TLR1,NUSAP1,HLX,ARG1,TMOD1,REXO2,PLA2G4A,PTEN,TNFSF10,NPL,PLEK,GINS3,NOD2,LXN,DNAJC15,HIST1H2AI,MFSD1,DEGS1,FAM46A,CENPN,ITGB2,SCO2,PSMC2,COL15A1,CDC123,DHRS9,HK3,SERPINB1,NOL7,ITGAM
    下调基因CLIC5,ASB1,PTGDS,EPHX2,CDKN1C,TNNC2,KIR2DL3,FCER1A,TGFBR3,FOSB
    下载: 导出CSV

    表  3  交集基因GO富集分析

    Table  3.   GO enrichment analysis of intersection genes

    ONTOLOGY ID 描述 P
    BP GO:0051607 defense response to virus 0.000
    GO:0060337 type I interferon signaling pathway 0.000
    GO:0042742 defense response to bacterium 0.000
    GO:0019221 cytokine-mediated signaling pathway 0.000
    GO:0002221 pattern recognition receptor signaling pathway 0.000
    GO:0039529 RIG-I signaling pathway 0.000
    GO:0002446 neutrophil mediated immunity 0.000
    GO:0002709 toll-like receptor signaling pathway 0.000
    GO:0002709 regulation of T cell mediated immunity 0.002
    CC GO:0042581 specific granule 0.000
    GO:0034774 secretory granule lumen 0.000
    GO:0060205 cytoplasmic vesicle lumen 0.000
    GO:0005766 primary lysosome 0.000
    GO:0045335 phagocytic vesicle 0.001
    MF GO:0003725 double-stranded RNA binding 0.000
    GO:0008301 DNA binding 0.006
    GO:0004518 nuclease activity 0.008
    GO:0042379 chemokine receptor binding 0.009
    GO:0019207 kinase regulator activity 0.015
    下载: 导出CSV

    表  4  交集基因KEGG信号通路分析

    Table  4.   KEGG pathway analysis of intersection genes

    ID 描述 P
    hsa05164 Influenza A 0.000
    hsa05171 COVID-19 0.000
    hsa04621 NOD-like receptor signaling pathway 0.000
    hsa04622 RIG-I-like receptor signaling pathway 0.000
    hsa05150 Staphylococcus aureus infection 0.001
    hsa05322 Systemic lupus erythematosus 0.002
    hsa04657 IL-17 signaling pathway 0.004
    hsa04623 Cytosolic DNA-sensing pathway 0.016
    hsa04610 Complement signaling pathway 0.022
    hsa04217 Necroptosis 0.025
    hsa04620 Toll-like receptor signaling pathway 0.037
    hsa04613 Neutrophil extracellular trap formation 0.044
    下载: 导出CSV
  • [1] Bastidas Goyes A R,Mora C,Arsanios D M,et al. Systemic lupus erythematosus,a disease conditioned by the environment[J]. Revista Colombiana de Reumatolog í a,2021,28(6):12-20.
    [2] Barber M R W,Drenkard C,Falasinnu T,et al. Global epidemiology of systemic lupus erythematosus[J]. Nat Rev Rheumatol,2021,17(9):515-532.
    [3] Gasparotto M,Gatto M,Binda V,et al. Lupus nephritis: Clinical presentations and outcomes in the 21st centu ry[J]. Rheumatology (Oxford),2020,59(Suppl5):v39-v51.
    [4] Heo YA. Voclosporin: First approval[J]. Drugs,2021,81(5):605-610.
    [5] Mejia-Vilet J M,Malvar A,Arazi A,et al. The lupus nephritis management renaissance[J]. Kidney Int,2022,101(2):242-255. doi: 10.1016/j.kint.2021.09.012
    [6] Parikh S V,Almaani S,Brodsky S,et al. Update on lupus nephritis: Core curriculum 2020[J]. American Journal of Kidney Diseases,2020,76(2):265-281. doi: 10.1053/j.ajkd.2019.10.017
    [7] Bernard L,Wang A R,Menez S,et al. Kidney biopsy utility: Patient and clinician perspectives from the kidney precision medicine project[J]. Kidney Med,2023,5(10):100707-100715. doi: 10.1016/j.xkme.2023.100707
    [8] Satam H,Joshi K,Mangrolia U,et al. Next-generation sequencing technology: Current trends and advancements[J]. Biology (Basel),2023,12(7):997-1021. doi: 10.3390/biology12070997
    [9] Langfelder P,Horvath S. Wgcna: An r package for weighted correlation network analysis[J]. BMC Bioinformatics,2008,9(12):559-571.
    [10] Nedaie A,Najafi A A. Support vector machine with dirichlet feature mapping[J]. Neural Netw,2017,98(2):87-101.
    [11] Ubels J,Schaefers T,Punt C,et al. Rainforest: A random forest approach to predict treatment benefit in data from (failed) clinical drug trials[J]. Bioinformatics,2020,36(Suppl_2):i601-i609.
    [12] Morris A C,Forbes-Osborne M A,Pillai L S,et al. Microarray analysis of xops-mcfp zebrafish retina identifies genes associated with rod photoreceptor degeneration and regeneration[J]. Invest Ophthalmol Vis Sci,2011,52(5):2255-2266. doi: 10.1167/iovs.10-6022
    [13] Ko WC C,Li L,Young T R,et al. Gene expression profiling in the skin reveals strong similarities between subacute and chronic cutaneous lupus that are distinct from lupus nephritis[J]. J Invest Dermatol,2021,141(12):2808-2819. doi: 10.1016/j.jid.2021.04.030
    [14] Wither J E,Prokopec S D,Noamani B,et al. Identification of a neutrophil-related gene expression signature that is enriched in adult systemic lupus erythematosus patients with active nephritis: Clinical/pathologic associations and etiologic mechanisms[J]. PLoS One,2018,13(5):e0196117. doi: 10.1371/journal.pone.0196117
    [15] Berthier C C,Bethunaickan R,Gonzalez-Rivera T,et al. Cross-species transcriptional network analysis defines shared inflammatory responses in murine and human lupus nephritis[J]. J Immunol,2012,189(2):988-1001.
    [16] Ducreux J,Houssiau F A,Vandepapelière P,et al. Interferon α kinoid induces neutralizing anti-interferon α antibodies that decrease the expression of interferon-induced and b cell activation associated transcripts: Analysis of extended follow-up data from the interferon α kinoid phase i/ii study[J]. Rheumatology (Oxford),2016,55(10):1901-1905. doi: 10.1093/rheumatology/kew262
    [17] McKellar J,Moncorgé O,Goujon C. Mx1 proteins and influenza a virus under the microscope[J]. Virologie (Montrouge),2023,27(1):31-34. doi: 10.1684/vir.2023.0990
    [18] Tao S,Tan X,Chai W,et al. Knockdown of klf5 ameliorates renal fibrosis in mrl/lpr mice via inhibition of mx1 transcription[J]. Immun Inflamm Dis,2023,11(7):e937. doi: 10.1002/iid3.937
    [19] Feng X,Wu H,Grossman J M,et al. Association of increased interferon-inducible gene expression with disease activity and lupus nephritis in patients with systemic lupus eryt hematosus[J]. Arthritis Rheum,2006,54(9):2951-2962.
    [20] Busse D C,Habgood-Coote D,Clare S,et al. Interferon-induced protein 44 and interferon-induced protein 44-like restrict replication of respiratory syncytial virus[J]. J Virol,2020,94(18):e00297.
    [21] DeDiego M L,Nogales A,Martinez-Sobrido L,et al. Interferon-induced protein 44 interacts with cellular fk506-binding protein 5,negatively regulates host antiviral responses,and supports virus replication[J]. mBio,2019,10(4):e01839.
    [22] Philips R L,Wang Y,Cheon H,et al. The jak-stat pathway at 30: Much learned,much more to do[J]. Cell,2022,185(21):3857-3876. doi: 10.1016/j.cell.2022.09.023
    [23] Xu W,Chen Z,Shen X,et al. Reno-protective effect of realgar nanoparticles on lupus nephritis of mrl/lpr mice through stat1[J]. Iran J Immunol,2019,16(2):170-181.
    [24] Fu Y,Xiang Y,Wang Y,et al. The stat1/hmgb1/nf-κb pathway in chronic inflammation and kidney injury after cisplatin exposure[J]. Theranostics,2023,13(9):2757-2773. doi: 10.7150/thno.81406
    [25] Kemmner S,Bachmann Q,Steiger S,et al. Stat1 regulates macrophage number and phenotype and prevents renal fibrosis after ischemia-reperfusion injury[J]. American Journal of Physiology-Renal Physiology,2019,316(2):F277-F291.
    [26] Ding X,Ren Y,He X. Ifn-i mediates lupus nephritis from the beginning to renal fibrosis[J]. Front Immunol,2021,12(4):676082-676099.
    [27] Arazi A,Rao D A,Berthier C C,et al. The immune cell landscape in kidneys of patients with lupus nephritis[J]. Nature immunology,2019,20(7):902-914.
  • [1] 殷瑞, 马国伟, 岳雯溪, 顾海霞, 周莹, 陈洁.  核苷酸类似物单药与联合干扰素治疗慢性乙肝的疗效, 昆明医科大学学报. 2024, 46(): 1-10.
    [2] 杨曼, 赵兴安, 葛芸娜, 秦娟, 王玺雅, 陶四明.  基于综合生物信息分析鉴定心房颤动相关炎症基因及其与免疫细胞浸润的关联, 昆明医科大学学报. 2024, 45(3): 18-29. doi: 10.12259/j.issn.2095-610X.S20240303
    [3] 沈枫, 杨一帆, 白茹, 李姝, 刘爽, 徐健.  全身免疫炎症指数与系统性红斑狼疮患者疾病活动度的关联分析, 昆明医科大学学报. 2024, 45(10): 45-49. doi: 10.12259/j.issn.2095-610X.S20241007
    [4] 李力, 张瑞仙.  环状RNA在系统性红斑狼疮中的潜在应用研究进展, 昆明医科大学学报. 2024, 45(6): 161-165. doi: 10.12259/j.issn.2095-610X.S20240622
    [5] 熊煜欣, 杨莹.  糖尿病肾小管病研究进展, 昆明医科大学学报. 2023, 44(9): 148-154. doi: 10.12259/j.issn.2095-610X.S20230920
    [6] 朱晓栋, 刘演龙, 周旭, 戴海龙, 尹小龙.  cMyBP-C在急性心肌梗死临床诊断中的价值, 昆明医科大学学报. 2023, 44(3): 97-102. doi: 10.12259/j.issn.2095-610X.S20230328
    [7] 李思琪, 邰文琳.  趋化因子CXCL10作为肝硬化生物标志物的意义, 昆明医科大学学报. 2022, 43(7): 55-61. doi: 10.12259/j.issn.2095-610X.S20220711
    [8] 马立花, 王湘宇, 杨一帆, 赵若彤, 丰晓妍, 徐健.  536例系统性红斑狼疮患者中性粒细胞/淋巴细胞比值与疾病活动度的关联性分析, 昆明医科大学学报. 2022, 43(2): 78-81. doi: 10.12259/j.issn.2095-610X.S20220209
    [9] 蔡金云, 王娟, 孙瑞希, 傅萍.  Rhupus综合征的临床特点, 昆明医科大学学报. 2021, 42(2): 64-69. doi: 10.12259/j.issn.2095-610X.S20210201
    [10] 娄雪, 廖莉, 赵若彤, 王湘宇, 杨一帆, 刘爽, 徐健.  抗dsDNA抗体、补体C3及其他实验室指标对于诊断系统性红斑狼疮肾损伤的临床意义, 昆明医科大学学报. 2021, 42(2): 49-53. doi: 10.12259/j.issn.2095-610X.S20210214
    [11] 廖莉, 娄雪, 赵若彤, 王湘宇, 杨一帆, 刘爽, 徐健.  中性粒细胞/淋巴细胞比值与系统性红斑狼疮患者肾脏损害的相关性, 昆明医科大学学报. 2021, 42(6): 72-75. doi: 10.12259/j.issn.2095-610X.S20210617
    [12] 曾怡, 杨敏, 廖云娟, 何振坤, 连希艳.  多靶点治疗IV+V型狼疮肾炎的临床疗效及对血清白细胞介素水平的作用评价, 昆明医科大学学报. 2019, 40(07): 96-99.
    [13] 刘桠名, 徐冕, 颜悦新, 周凤高, 许成, 赵琨, 蒋国云, 武彧, 刘荣.  基于代谢组学的脓毒症大鼠生物标志物研究, 昆明医科大学学报. 2019, 40(06): 16-22.
    [14] 陈怡.  雷公藤多甙联合醋酸泼尼松+硫酸羟基氯喹治疗系统性红斑狼疮, 昆明医科大学学报. 2018, 39(03): 98-102.
    [15] 唐帮丽.  脐带间充质干细胞移植治疗狼疮性肾炎的疗效与机制, 昆明医科大学学报. 2016, 37(07): -.
    [16] 袁杉.  抗C1q 抗体与系统性红斑狼疮及狼疮肾炎的相关性, 昆明医科大学学报. 2015, 36(10): -.
    [17] 李敬.  二维斑点追踪显像评价系统性红斑狼疮患者左心房功能, 昆明医科大学学报. 2014, 35(11): -1.
    [18] 杨小蕾.  系统性红斑狼疮患者STAT4基因mRNA和血清中IL-12、IFN-γ的表达, 昆明医科大学学报. 2013, 34(04): -.
    [19] 李玉晓.  大蒜新素对变应性鼻炎患者外周血白介素4和γ干扰素的影响, 昆明医科大学学报. 2012, 33(06): -.
    [20] 郭贤利.  慢性乙型肝炎病毒基因型与干扰素疗效关系的研究, 昆明医科大学学报. 2012, 33(11): -.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  35
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-15
  • 网络出版日期:  2024-11-23

目录

    /

    返回文章
    返回