miR-490-3p Suppresses EMT of SW1990 Pancreatic Cancer Cells
-
摘要:
目的 研究miR-490-3p在分子水平上通过HMGA2蛋白对SW1990细胞上皮间充质转化的影响。 方法 通过实时荧光定量PCR法(RT-qPCR)检测正常胰腺导管上皮细胞HPDE和人胰腺癌细胞SW1990中miR-490-3p的表达。通过转染质粒[miR-490-3p阻遏物(inhibitor)和miR-490-3p模拟物(mimic)以及各自的阴性对照质粒]调控miR-490-3p在SW1990细胞中的表达并通过RT-qPCR法验证转染效率。转染48 h后,通过CCK8检测、划痕法、Transwell小室检测,流式细胞仪检测等分别检测细胞增殖、凋亡、迁移和侵袭等恶性生物学特征的影响。通过Western blot检测细胞中上皮间充质转化相关蛋白E-cadherin和N-cadherin的蛋白表达水平。同时,用数据库预测miR-490-3p及其靶基因HMGA2的靶向关系,并通过双荧光素酶报告基因实验进行验证,通过Western blot检测细胞中HMGA2的蛋白表达水平。 结果 (1)与HPDE正常细胞相比,SW1990癌细胞中miR-490-3p表达水平明显降低(P = 0.215);(2)miR-490-3p 上调后,SW1990细胞的凋亡率显著高于对照组(P < 0.0001),而细胞增殖、迁移和侵袭能力显著低于对照组(P < 0.0001)。miR-490-3p 下调后,SW1990细胞的凋亡率显著低于对照组(P < 0.0001),而细胞增殖、迁移和侵袭能力显著高于对照组(P < 0.0001);(3)miR-490-3p 上调后,SW1990细胞中的N-cadherin表达量显著高于对照组(P < 0.0001),而E-cadherin的表达水平显著低于对照组(P < 0.0001);miR-490-3p 下调后,SW1990细胞中的N-cadherin表达量显著低于对照组(P < 0.0001),而E-cadherin的表达水平显著高于对照组(P < 0.0001);(4)HMGA2是miR-490-3p的靶向基因。 结论 miR-490-3p可通过靶向HMGA2抑制SW1990胰腺癌细胞EMT,从而影响胰腺癌的的发生发展进程,揭示HMGA2和miR-490-3p可能为胰腺癌诊断和治疗的靶点。 -
关键词:
- 胰腺癌 /
- 上皮间充质转化 /
- miR-490-3p /
- HMGA2
Abstract:Objective To elucidate the role of miR-490-3p in regulating HMGA2 expression and affecting epithelial-mesenchymal transition (EMT) of SW1990 cells. Methods miR-490-3p expression was measured in HPDE and SW1990 cell lines by Real-time PCR. SW1990 cell lines were cultured in vitro and divided into four groups, including inhibitor-Negative control (inhibitor-NC), miR-490-3p inhibitor, mimic- Negative control (mimic-NC) and miR-490-3p mimic group, and the transfection efficiency was verified by RT-qPCR. After 48 h of transfection, CCK8 assay, wound healing assay, Transwell invasion assay andflow cytometric were used to detect the effects of malignant biological characteristics such as proliferation, migration, invasion and apoptosis of SW1990 cell linerespectively. Western blot was used to detect the expression of E-cadherin and N-cadherin. Meanwhile, database predicted the target genes of miR-490-3p, and dual luciferase assay confirmed the targeted relationship between miR-490-3p and HMGA2, western blot was used to detect the expression of HMGA2. Results 1) The expression of miR-490-3p was downregulated in SW1990 cells (P = 0.215). 2) Overexpression of miR-490-3p significantly inhibited the proliferation (P < 0.0001), migration (P < 0.0001) and invasion (P < 0.0001) of SW1990 cell line and prompted apoptosis (P < 0.0001); In contrast, downregulation of miR-490-3p significantly promoted the proliferation (P < 0.0001), migration (P < 0.0001) and invasion (P < 0.0001) of SW1990 cell line and inhibited apoptosis (P < 0.0001). 3) Upregulation of miR-490-3p significantly decreased the expression of N-cadherin (P < 0.0001) and increased E-cadherin (P < 0.0001) expression in SW1990 cell line. In contrast, downregulation of miR-490-3p significantly upregulated (P < 0.0001) the expression of N-cadherin, decreased E-cadherin (P < 0.0001) expression. 4) HMGA2 was a target gene of miR-490-3p. Conclusion These findings indicate that miR-490-3p acts as a tumor suppressor during the process of EMT through targeting HMGA2, suggesting miR-490-3p is a potential new diagnostic and therapeutic target for the treatment of pancreatic cancer. -
Key words:
- Pancreatic cancer /
- EMT /
- miR-490-3p /
- HMGA2
-
表 1 RT-qPCR扩增引物序列表
Table 1. Nucleotide sequences of the primers used for real-time quantitative PCR
引物名称 引物序列 miR-490-3p forward 5′-CGTGGATCCTTCTTCAACCAACGGTGGTG-3′ miR-490-3p reverse 5′-CCAGAATTCAAAGCAGGAAGAGTAAGACTTCC-3′ U6 forward 5′-GCTTCGGCAGCACATATACTAA-3′ U6 reverse 5′-CGAATTTGCGTGTCATCCTT-3′ -
[1] Torre L A,Bray F,Siegel R L,et al. Global cancer statistics,2012[J]. CA:a Cancer Journal for Clinicians,2015,65(2):87-108. doi: 10.3322/caac.21262 [2] Ansari D,Tingstedt B,Andersson B,et al. Pancreatic cancer:Yesterday,today and tomorrow[J]. Future Oncology (London,England),2016,12(16):1929-1946. doi: 10.2217/fon-2016-0010 [3] 许伟先,何志伟,喻超,等. microRNA-125b对胰腺癌侵袭转移的影响及其机制[J]. 贵阳医学院学报,2019,44(8):881-885. [4] Khan S,Anasrullah,Kumar D,et al. Targeting microRNAs in pancreatic cancer:microplayers in the big game[J]. Cancer Research,2013,73(22):6541-6547. doi: 10.1158/0008-5472.CAN-13-1288 [5] Aiello N M,Brabletz T,Kang Y,et al. Upholding a role for EMT in pancreatic cancer metastasis[J]. Nature,2017,547(7661):E7-E8. doi: 10.1038/nature22963 [6] Beuran M,Negoi I,Paun S,et al. The epithelial to mesenchymal transition in pancreatic cancer:A systematic review[J]. Pancreatology:Official Journal of the International Association of Pancreatology (IAP),2015,15(3):217-225. doi: 10.1016/j.pan.2015.02.011 [7] Gaianigo N,Melisi D,Carbone C. EMT and treatment resistance in pancreatic cancer[J]. Cancers,2017,9(9):122-138. [8] Zhou P,Li B,Liu F,et al. The epithelial to mesenchymal transition (EMT) and cancer stem cells:implication for treatment resistance in pancreatic cancer[J]. Molecular Cancer,2017,16(1):52-63. doi: 10.1186/s12943-017-0624-9 [9] 王甫珏,李君君,谢海涛,等. 地西他滨对 K562 细胞增殖和 TFPI-2 基因表达的影响[J]. 中华血液学杂志,2017,38(4):340-343. doi: 10.3760/cma.j.issn.0253-2727.2017.04.016 [10] Moore A,Donahue T. Pancreatic cancer[J]. Jama,2019,322(14):1426-1426. doi: 10.1001/jama.2019.14699 [11] Beger H G, Birk D. Pancreatic cancer staging systems and their clinical impact[M]. Hoboken, New Jersey, USA: John Wiley & Sons, Ltd, 2009: 25-158. [12] Xu B,Liu J,Xiang X,et al. Expression of miRNA-143 in pancreatic cancer and its clinical significance[J]. Cancer Biotherapy & Radiopharmaceuticals,2018,33(9):373-379. [13] Shang S,Wang J,Chen S,et al. Exosomal miRNA-1231 derived from bone marrow mesenchymal stem cells inhibits the activity of pancreatic cancer[J]. Cancer Medicine,2019,8(18):7728-7740. doi: 10.1002/cam4.2633 [14] 邓思远,贺德,马广念,等. 微小RNA-490-3p对人胰腺癌的增殖,迁移,侵袭,凋亡的影响[J]. 中华实验外科杂志,2020,37(4):673-675. doi: 10.3760/cma.j.cn421213-20190715-01002 [15] Ou Y,He J,Liu Y. MiR-490-3p inhibits autophagy via targeting ATG7 in hepatocellular carcinoma[J]. IUBMB Life,2018,70(6):468-478. doi: 10.1002/iub.1715 [16] Fan H,Zhang Y S. miR-490-3p modulates the progression of prostate cancer through regulating histone deacetylase 2[J]. European Review for Medical and Pharmacological Sciences,2019,23(2):539-546. [17] Liu X,He B,Xu T,et al. MiR-490-3p functions as a tumor suppressor by inhibiting oncogene VDAC1 expression in colorectal cancer[J]. Journal of Cancer,2018,9(7):1218-1230. doi: 10.7150/jca.23662 [18] Zhang F,Wu A,Wang Y,et al. miR-490-3p functions as a tumor suppressor in glioma by inhibiting high-mobility group AT-hook 2 expression[J]. Experimental and Therapeutic Medicine,2019,18(1):664-670. [19] De Craene B,Berx G. Regulatory networks defining EMT during cancer initiation and progression[J]. Nature Reviews Cancer,2013,13(2):97-110. doi: 10.1038/nrc3447 [20] 邹晨. Prrx1基因在胰腺癌EMT中的作用及机制研究[D], 南京: 南京医科大学博士学位论文, 2016. [21] 朱亮. RGC-32在胰腺癌EMT中的作用及机制研究[D]; 武汉: 华中科技大学博士学位论文, 2012. [22] 邵珊,秦涛,钱伟琨,等. Hedgehog通路通过非配体依赖途径调控缺氧诱导的胰腺癌EMT及侵袭过程[J]. 西安交通大学学报(医学版),2020,41(3):347-355. [23] Krebs A M,Mitschke J,Lasierra Losada M,et al. The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer[J]. Nature Cell Biology,2017,19(5):518-529. doi: 10.1038/ncb3513 [24] Fusco A,Fedele M. Roles of HMGA proteins in cancer[J]. Nature Reviews Cancer,2007,7(12):899-910. doi: 10.1038/nrc2271 [25] Watanabe S,Ueda Y,Akaboshi S,et al. HMGA2 maintains oncogenic RAS-induced epithelial-mesenchymal transition in human pancreatic cancer cells[J]. The American Journal of Pathology,2009,174(3):854-868. doi: 10.2353/ajpath.2009.080523 [26] Zhang S,Mo Q,Wang X. Oncological role of HMGA2 (Review)[J]. International Journal of Oncology,2019,55(4):775-788. [27] Hawsawi O,Henderson V,Burton L J,et al. High mobility group A2 (HMGA2) promotes EMT via MAPK pathway in prostate cancer[J]. Biochemical and Biophysical Research Communications,2018,504(1):196-202. doi: 10.1016/j.bbrc.2018.08.155 [28] Dong J,Wang R,Ren G,et al. HMGA2-FOXL2 axis regulates metastases and epithelial-to-mesenchymal transition of chemoresistant gastric cancer[J]. Clinical Cancer Research:an Official Journal of the American Association for Cancer Research,2017,23(13):3461-3473. doi: 10.1158/1078-0432.CCR-16-2180