Effect of Ginsenoside Rg1 on Renal Protection in Type 2 Diabetic Rats
-
摘要:
目的 探讨人参皂苷Rg1对2型糖尿病大鼠肾脏的保护作用及机制。 方法 采用高糖高脂饮食 + 小剂量链脲佐菌素(STZ)建立2型糖尿病大鼠模型,给予人参皂苷Rg1灌胃4周治疗后,测定血肌酐(Scr)、尿素氮(BUN)、尿酸(UA)。取肾脏组织切片进行HE染色,观察肾脏组织的病理改变;用Westernblot检测大鼠肾脏组织内血管紧张素Ⅱ1型受体(AT1)、转化生长因子-β1(TGF-β1)、金属蛋白酶-9(MMP-9)的表达水平。 结果 2型糖尿病大鼠BUN明显高于正常组,但是Scr、UA与正常组比无统计学意义(P > 0.05)。人参皂苷Rg1不同剂量治疗后BUN值下降,二甲双胍组BUN也下降,而Scr、UA变化差异无统计学意义( P > 0.05)。糖尿病大鼠肾系数高于正常组( P < 0.05),给与人参皂苷Rg1以及二甲双胍治疗后肾体比下降( P < 0.05)。糖尿病大鼠肾脏AT1及TGF-β 1表达高于正常组(P < 0.05),给与人参皂苷Rg1不同剂量以及二甲双胍治疗后表达降低( P < 0.05)。MMP9在糖尿病大鼠肾脏中表达下降,而在人参皂苷Rg1以及二甲双胍治疗后表达增加。 结论 人参皂苷Rg1能够保护大鼠肾脏受损,其分子机制可能是通过抑制RAS系统激活,抑制TGF-β1的表达,促进细胞外基质的水解,减轻肾脏受损程度。 -
关键词:
- 人参皂苷Rg1 /
- 2型糖尿病 /
- 肾脏RAS系统 /
- 对肾的保护作用及机制
Abstract:Objective To investigate the protective effect and mechanism of ginsenoside Rg1 on the kidneys of type 2 diabetic rats. Methods A high-sugar and high-fat diet + low-dose streptozotocin (STZ) was used to establish a type 2 diabetic rat model. Ginsenoside Rg1 was administered to the stomach for 4 weeks, and blood creatinine (Scr)、uric acid (UA) and urea nitrogen (BUN) were measured. Take kidney tissue sections for HE staining to observe the pathological changes of kidney tissue; Western blot was used to detect angiotensin Ⅱ type 1 receptor (AT1), transforming growth factor-β1 (TGF-β1) and metalloproteinase-9 in rat kidney tissue expression level. Results BUN of type 2 diabetic rats was significantly higher than that of the normal group, but Scr and UA were not statistically significant compared with the normal group. After different doses of ginsenoside Rg1, the BUN value decreased, and the BUN of the metformin group also decreased, but there was no statistical difference in the changes of Scr and UA (P > 0.05). The renal coefficient of diabetic rats was higher than that of the normal group, and the renal body ratio decreased after treatment with ginsenoside Rg1 and metformin ( P < 0.05). The expressions of AT1 and TGF-β1 in the kidneys of diabetic rats were higher than those in the normal group, and the expressions decreased after being given different doses of ginsenoside Rg1 and metformin treatment ( P < 0.05). The expression of MMP9 decreased in the kidneys of diabetic rats, but increased after treatment with ginsenoside Rg1 and metformin ( P < 0.05). Conclusions Ginsenoside Rg1 can protect the kidney from damage in rats. Its molecular mechanism may be through inhibiting the activation of the RAS system, inhibiting the expression of TGF-β1, promoting the hydrolysis of extracellular matrix, and reducing the degree of kidney damage. -
表 1 血生化指标( $\bar x \pm s $)
Table 1. Blood biochemical index ( $\bar x \pm s $)
检测指标 正常组(n = 6) 模型组(n = 6) 低剂量Rg1(n = 6) 中剂量Rg1(n = 6) 高剂量Rg1(n = 6) 二甲双胍(n = 6) 尿素氮 4.93 ± 0.562 10.00 ± 0.628# 6.41 ± 0.509* 7.74 ± 0.296* 7.18 ± 0.614* 12.97 ± 0.848* 肌酐 41.67 ± 3.667 43.22 ± 2.253 44.86 ± 2.865 42.22 ± 1.913 48.22 ± 3.643 50.33 ± 2.744 尿酸 5.50 ± 0.269 5.00 ± 0.289 5.13 ± 0.350 5.89 ± 0.824 6.00 ± 0.373* 5.75 ± 0.366 与正常组相比较具有统计学意义,#P < 0.05;与模型组比较有统计学意义, *P < 0.05。 表 2 肾脏指标( $\bar x \pm s $)
Table 2. Kidney indicators ( $\bar x \pm s $)
检测指标 正常组(n = 6) 模型组(n = 6) 低剂量Rg1(n = 6) 中剂量Rg1(n = 6) 高剂量Rg1(n = 6) 二甲双胍(n = 5) 左肾重 1.84 ± 0.131 2.22 ± 0.082# 1.90 ± 0.052* 1.43 ± 0.114* 1.58 ± 0.091* 1.90 ± 0.110* 体重 570.50 ± 17.480 376.80 ± 7.016# 395.30 ± 11.070 366.50 ± 4.403 367.00 ± 8.450 398.20 ± 9.932 肾重/体重 0.32 ± 0.022 0.59 ± 0.024# 0.48 ± 0.008* 0.39 ± 0.030* 0.43 ± 0.028* 0.48 ± 0.021* 与正常组比较具有统计学意义,#P < 0.05;与模型组比较有统计学意义, *P < 0.05。 -
[1] Khan M A B. Epidemiology of Type 2 Diabetes - Global Burden of Disease and Forecasted Trends[J]. Journal of epidemiology and global health,2020,10(1):107-111. [2] 吴雪怡. 2型糖尿病肾损害的病理分型及其临床意义[D]. 北京: 北京协和医学院博士论文, 2012. [3] 赵莹莹. 肾素-血管紧张素系统与糖尿病[J]. 中国组织工程研究,2014,018(B12):92-92. [4] Nakamura T,Obata J,Kimura H,et al. Blocking angiotensin Ⅱ ameliorates proteinuria and glomerular lesions in progressive mesangioproliferative glomerulonephritis[J]. Kidney international,1999,55(3):877-889. doi: 10.1046/j.1523-1755.1999.055003877.x [5] 董骏武,刘晓城,刘慎微,等. 羟苯磺酸钙对糖尿病大鼠肾小球MMP9/TIMP1的影响[J]. 临床内科杂志,2005,22(6):419-421. doi: 10.3969/j.issn.1001-9057.2005.06.022 [6] 马洪波. MMP—9在糖尿病肾病中的研究进展[J]. 国外医学(老年医学分册),2003,(3):114-118. [7] 王永强. 雷帕霉素对STZ致糖尿病幼年大鼠肾脏NF-κB与MMP9表达的影响[M]. 南昌: 南昌大学硕士论文, 2014. [8] 郭从亮,崔秀明,杨晓艳,等. 人参皂苷生物转化研究进展[J]. 中国中药杂志,2014,39(20):3899-3904. [9] 李成鹏,张梦思,刘俊,等. 人参皂苷Rg_1延缓脑衰老机制研究[J]. 中国中药杂志,2014,39(22):4442-4447. [10] 尉海涛. 人参皂苷Rg1对糖尿病大鼠心肌损伤的保护作用及机制研究[M]. 长春: 吉林大学硕士论文, 2016. [11] 詹淑玉,邵青,李正,等. 生脉注射液中人参皂苷Rg_1,Rb_1在心肌缺血大鼠体内的药动学-药效学结合研究[J]. 中国中药杂志,2014,39(7):1300-1305. [12] 张庆勇,陈燕萍,刘芬,等. 人参皂苷Rg1对大鼠急性心肌缺血抗氧化损伤指标及超微结构的影响[J]. 中国循环杂志,2015,30(2):164-167. doi: 10.3969/j.issn.1000-3614.2015.02.017 [13] 张潇丹. 人参皂苷Rg1对阿尔茨海默病大鼠认知功能障碍的作用及机制研究[M]. 济南: 山东大学硕士论文, 2013. [14] 陈羡人,高雅文,邓小梅. 人参皂苷Rg1对糖尿病大鼠肝损伤、氧化应激及肝组织Toll样受体4表达的影响[J]. 中国临床药理学杂志,2020,36(2):146-149. [15] 夏雨果,陈秋,高坪,等. 人参皂苷Rg_1对糖尿病大鼠勃起功能障碍的影响[J]. 中成药,2019,41(6):1258-1263. doi: 10.3969/j.issn.1001-1528.2019.06.012 [16] 杨敬,代俞燕,熊燕影等. 人参皂苷Rg1对糖尿病肾病大鼠血清氧化应激指标、炎性因子及肾组织TGF-β1、MCP-1 mRNA的影响[J]. 现代生物医学进展,2020,20(5):853-856+918. [17] 沈晓燕. NOX4-NLRP3信号通路在小鼠肾脏老化损伤中的作用及人参皂苷Rg1的调节作用[D]. 安徽医科大学硕士论文, 2020. [18] 黄琦, 倪海祥, 苏建明. 人参皂苷对2型糖尿病大鼠肾组织基质金属蛋白酶的影响[C]. 浙江省内分泌学学术会议, 2008, p2, 中国浙江临海. [19] 倪海祥,杨雪辉,朱峰,等. 人参皂苷对糖尿病大鼠肾组织基质金属蛋白酶2表达的影响[J]. 中国中西医结合肾病杂志,2009,10(3):211-213. doi: 10.3969/j.issn.1009-587X.2009.03.008 [20] 苏建明,倪海祥,黄琦,等. 人参皂苷对糖尿病大鼠肾组织基质金属蛋白酶9及Ⅳ型胶原表达的影响[J]. 中国中医急症,2011,20(6):924-925. doi: 10.3969/j.issn.1004-745X.2011.06.037 [21] 陈少霞,龚莉. 肾脏局部肾素血管紧张素系统与糖尿病肾病肾脏细胞的损害[J]. 糖尿病新世界,2016,19(2):115-117. [22] 侯丽娜,毕力夫,苏秀兰. RAS基因多态性与糖尿病合并高血压相关性研究进展[J]. 中国医药导报,2017,14(23):33-35. [23] 马也娉,张铮,卓莉,等. 肾活检组织血管紧张素AT1、AT2和MAS受体表达与糖尿病肾病病理损伤的关系[J]. 国际泌尿系统杂志,2018,38(2):256-261. doi: 10.3760/cma.j.issn.1673-4416.2018.02.023 [24] 张芳. ACEI联合AT1受体阻断剂双重阻断RAS系统治疗老年糖尿病肾病疗效分析[J]. 蚌埠医学院学报,2020,45(1):74-77. [25] 包慧兰,叶赏和,楼时先,等. 早期糖尿病肾病血清HGF,Cys C和TGF-β1水平及平肾汤干预的影响[J]. 中国中药杂志,2014,39(6):1128-1131. [26] 张倩. 糖尿病肾病患者TGF-β1基因表达调控区甲基化水平变化及意义的研究[M]. 重庆: 第三军医大学硕士论文, 2016.