留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FBP1在癌症中的研究进展

李晓涛 王海峰 王剑松

李晓涛, 王海峰, 王剑松. FBP1在癌症中的研究进展[J]. 昆明医科大学学报, 2021, 42(12): 156-160. doi: 10.12259/j.issn.2095-610X.S20211237
引用本文: 李晓涛, 王海峰, 王剑松. FBP1在癌症中的研究进展[J]. 昆明医科大学学报, 2021, 42(12): 156-160. doi: 10.12259/j.issn.2095-610X.S20211237
Xiao-tao LI, Hai-feng WANG, Jian-song WANG. Advances on FBP1’s Role in Malignant Tumors[J]. Journal of Kunming Medical University, 2021, 42(12): 156-160. doi: 10.12259/j.issn.2095-610X.S20211237
Citation: Xiao-tao LI, Hai-feng WANG, Jian-song WANG. Advances on FBP1’s Role in Malignant Tumors[J]. Journal of Kunming Medical University, 2021, 42(12): 156-160. doi: 10.12259/j.issn.2095-610X.S20211237

FBP1在癌症中的研究进展

doi: 10.12259/j.issn.2095-610X.S20211237
基金项目: 国家自然科学基金资助项目(81960322);云南省科技厅-昆明医科大学应用基础研究联合专项基金资助项目(202001AY070001-214);云南省教育科学研究基金资助项目(2020J0177)
详细信息
    作者简介:

    李晓涛(1987~),男,云南砚山人,在读博士研究生,主要从事膀胱肿瘤临床与基础研究工作

    通讯作者:

    王剑松,E-mail: jiansongwangkm@126.com

  • 中图分类号: R73

Advances on FBP1’s Role in Malignant Tumors

  • 摘要: FBP1作为糖异生过程的关键酶,控制糖异生的速率,催化1-6二磷酸果糖不可逆的水解成6-磷酸果糖和无机磷酸盐,从而能够控制糖异生速率,影响细胞糖酵解。近年来,其在癌症中的作用越来越受到重视。研究发现FBP1在多种肿瘤中表达异常,与肿瘤发生、发展及预后关系密切,这些结果对于肿瘤分子标记物、靶向药物研究、预后相关研究表现出良好的前景。
  • 目前,癌症已经成为全球仅次于心脑血管疾病的第2大死因,严重影响人类健康,已然成为各国政府不得不面对的公共卫生问题[1]。根据Globocan数据预测2020年,全世界约有1 930万新增癌症病例且1 000万将死于癌症[2]。癌症的复发和转移是造成患者死亡的最主要因素,只有对发病机制有详细的了解才可能从源头上解决目前临床诊疗过程中存在的难点。因此,研究癌症发生发展的分子机制和生物标志物已成为广大科研人员研究的新热点。近年来研究发现FBP1在肿瘤组织中表达情况可以预测多种癌症预后,可能是一个潜在的治疗靶点。本文就FBP1基因在癌症中的研究现状作一综述。

    人FBP1基因位于染色体9q22.32上,由37126个碱基组成,编码的蛋白由4个亚基,共256个氨基酸构成的果糖-1,6-二磷酸酶1(Fructose-1,6-Bisphosphatase 1)。结构学研究发现其有2种不同构象,即活性状态R(疏松型)和无活性状态T(紧密型),这取决于与其结合不同配体的不同状态[3]。FBP1亚细胞定位于细胞质、细胞核以及细胞外泌体[4-5]。基因本体论分析显示FBP1分子功能有:腺嘌呤核苷酸结合、果糖-1,6-二磷酸酶活性、金属离子结合、单糖结合,以及RNA聚合酶II转录因子结合的能力[6]。作为糖异生过程的关键酶,FBP1控制着肝脏、肾脏糖异生的速率,在二价阳离子存在的情况下,能够催化1-6二磷酸果糖不可逆的水解成6-磷酸果糖和无机磷酸盐。该酶广泛存在于许多原核生物和真核生物体内,在哺乳动物中,以肝脏和肾脏为主[7]。目前,FBP1在非糖异生器官中的作用尚未明确。

    癌细胞主要通过有氧糖酵解供能,糖异生与糖酵解是2个近乎相反的过程,FBP1抑制糖酵解可能抑制瓦博格效应,不利于癌细胞代谢。因此,FBP1在癌症中的研究得以重视。随着研究的深入,发现FBP1抑癌的作用机制可能通过阻滞细胞周期,抑制肿瘤细胞自噬,促进肿瘤细胞凋亡,抑制癌细胞侵袭和转移来实现。

    Liu等[8]研究发现,在RAS转化的NIH3T3细胞中,FBP1通过核因子(nuclear factor,NF)kappa B途径被下调;恢复FBP1表达能够降低胃癌细胞的生长速率和糖酵解;抑制NF-kappaB导致启动子甲基化介导的FBP1下调;临床数据分析发现FBP1启动子甲基化与胃癌发生、TNM分区以及生存率显著相关,是胃癌的独立预测因子。Li等[9]通过分析癌症基因组图谱数据库中的胃癌数据,发现FBP1 mRNA水平与胃癌患者总生存预后相关,还是胃癌患者总生存期和无病生存期的独立预测因子;异位表达FBP1抑制胃癌细胞的增值和侵袭,结果和Liu[8]的一致,究其机制发现FBP1是通过抑制上皮间质转化过程进而影响细胞增值和侵袭。Yu等[10]恢复FBP1表达可以逆转胃癌细胞的糖酵解和EMT过程。以上研究均提示FBP1可以作为抑制胃癌细胞侵袭和转移的作用靶点,还可作为胃癌患者预后的标志物。

    Li等[11]发现FBP1表达缺失在肾癌发生率很高,低表达意味着较晚的分期和较差的预后,机制研究发现FBP1通过与缺氧抑制因子的抑制结构域直接作用,抑制细胞的增值、糖酵解和磷酸戊糖途径。FBP1表达阳性的肾透明细胞癌患者5年生存率优于阴性表达患者,并且FBP1低表达与临床分期、病理分级以及复发情况都有相关性[12]。高级别肾透明细胞癌患者的肿瘤组织对18F-FDG最大摄取值高于低级别的;而GLUT1在组织中的表达与18F-FDG摄取和FBP1状态呈正相关,据此推测FBP1可能通过调节GLUT1抑制18F-FDG摄取[13]。以上研究结果提示FBP1可以作为肾癌潜在的预后预测指标。

    Zhu等[14]研究发现核仁磷酸蛋白(nucleophosmin,NPM1)敲除的胰腺癌细胞显著降低葡萄糖的摄取,并且乳酸产量也减少,在NPM1过表达的细胞中转染FBP1质粒能够部分逆转NPM1对胰腺癌细胞的影响,说明NPM1能刺激有氧糖酵解,抑制胰腺癌细胞中的FBP1;而且FBP1高表达的胰腺癌患者总生存期好于低表达者。胰腺癌细胞中FBP1是色盒蛋白同源体3(chromobox protein homolog,CBX3)下游靶点,沉默FBP1可以减弱CBX3缺失对胰腺癌细胞葡萄糖代谢的影响,破坏CBX3-FBP1信号轴将有助于胰腺癌的治疗[15]。除抑制胰腺癌细胞瓦博格效应影响细胞增殖外,FBP1通过ERK-c-Myc信号轴促进c-Myc降解,调节胰腺癌细胞对BET蛋白抑制剂的敏感性[16]。在胰腺癌化疗耐药相关研究中发现,FBP1通过与中断丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)相互作用抑制ERK激活进而避免吉西他滨耐药[17]。除此之外,泛素特异性蛋白酶44(ubiquitin-specific protease 44,USP44)促进FBP1去泛素化,增加FBP1蛋白在胰腺癌中表达,也能避免吉西他滨耐药[18]。可见,除与胰腺癌患者预后相关,FBP1还能改善胰腺癌细胞对吉西他滨化疗耐药,可为今后个性化化疗方案制定提供基础研究依据。

    去甲基化试剂处理的肝癌细胞,可以上调FBP1的表达,说明肝癌细胞中FBP1失活是FBP1甲基化导致的[19]。FBP1除受到甲基化修饰而抑制外,组蛋白去乙酰化也可以导致FBP1抑制。肝癌组织中FBP1-mRNA的表达下降,与临床标本免疫组化结果一致;在肝细胞癌组织中FBP1的下调与较低的总体生存率相关,并且具有相对较高的肿瘤复发倾向[20]。此外,沉默FBP1可显著促进肝癌细胞的集落形成、增殖和转移,而FBP1的异位过表达则导致体外和体内集落形成、增殖和转移能力受损,进一步研究发现,使用靶向瓦博格效应的特异性抑制剂FX11可以抑制由FBP1缺失介导的肝癌细胞的侵袭性,这与Jin[21]和Yang等[22]的研究结果一致。恢复肝癌细胞中FBP1的表达可抑制Snail过表达诱导的SMMC-7721细胞EMT表型、肿瘤迁移和肿瘤生长[23]。另外,有研究[24]表明miR-517a可以靶向抑制FBP1进而肝癌细胞的瓦博格效应。以上这些研究结果均表明FBP1可拮抗瓦博格效应,可能是HCC中的肿瘤抑制因子。因此,靶向肝细胞代谢可能成为肝癌治疗的新策略。

    与其他消化道肿瘤研究结果相似,FBP1在结直肠癌低表达与FBP1启动子甲基化密切相关,启动子甲基化水平可以预测结肠癌患者的预后[19]。转录因子FOXC1在结直肠癌标本中的表达高于癌旁组织标本,生存分析以及队列研究显示异位FOXC1表达与缩短的生存期显著相关;在结直肠癌细胞中沉默FOXC1的表达可抑制其增殖和集落形成,并降低其葡萄糖消耗和乳酸的产生,说明瓦博格效应得到抑制;FOXC1表达的增加下调了FBP1的表达,深入研究发现FOXC1能够直接结合到FBP1基因的启动子区域并负调控其转录活性;异常的FBP1表达有助于增强结直肠癌的致瘤性,FBP1表达降低与FOXC1表达增加相结合提高了预测价值。可见通过FOXC1/FBP1轴诱导结直肠癌细胞增殖,发生代谢重编程,是结直肠癌潜在预后预测因子和治疗靶向轴[25]

    肿瘤细胞一旦发生EMT便增强了侵袭和转移能力,并使其富有肿瘤干细胞的特征[26]。研究表明[27] Snail-G9a-Dnmt1复合物对于E-cadherin启动子沉默至关重要,也是基底样乳腺癌中FBP1启动子甲基化所必需的。下调FBP1可增强Wnt/β-catenin通路的活性,增加下游靶标c-Myc和基质金属蛋白酶7的水平;推测FBP1升高通过改变葡萄糖代谢和Wnt/b-catenin途径的活性,在乳腺癌进展中是一个关键的调节剂[28]。HIF-1α是肿瘤细胞代谢重编程的主要调节因子之一。过表达的FBP1还可能通过靶向HIF-1α抑制基底样乳腺癌中肿瘤的生长、迁移和糖酵解[29]。FBP1的活性还受到高迁移率组盒2(High-mobility group box 2,HMGB2)的转录调控,最终影响瓦博格效应[30]。此外,FBP1在不同亚型的乳腺癌细胞中差异表达反映出不同无病生存率[31]。然而,在一项研究中发现,乳腺癌脑转移瘤组织中的FBP1表达并不是下调而是上调的,与其他研究结果相反,但具体机制不清楚,可能与脑部转移的乳腺癌细胞进化出不依赖葡萄糖而生存和增殖的能力有关[32]

    非小细胞肺癌中FBP1相对表达量明显低于切缘组织和正常组织,并与肿瘤复发情况呈现出负相关[33],恢复FBP1表达抑制葡萄糖摄取和乳酸产生,抑制肺癌细胞在低氧条件下的增殖和侵袭,并在体内抑制肺癌的生长,机制可能是锌指E盒结合同源盒1(zinc finger E-box-binding homeobox 1,ZEB1)与FBP1启动子结合,导致FBP1甲基化增强,抑制FBP1表达[34]。FBP1启动子甲基化水平可以反映FBP1表达情况,并可作为判断非小细胞肺癌患者预后的标志物[35]。miR-21在非小细胞肺癌中可以靶向FBP1,促进糖酵解,降低氧化磷酸化水平[36]。当然这些研究均处理基础研究阶段,但均表现出潜在的价值,最终临床转化还需大量深入的实验。

    在众多恶性肿瘤中,FBP1普遍下调,可以作为预后判断的有效指标,呈现出抑癌基因的功能。FBP1作为糖异生过程中的关键酶之一,可抑制瓦伯格效应,表现出良好的研究前景,但具体调控机制研究不透彻,是否对肿瘤血管生成产生影响等等问题还有待阐明。因此,深入研究FBP1在肿瘤中调控机制和新功能对今后肿瘤靶向药物开发、改善肿瘤患者化疗耐药及临床预后具有极其重要的意义。

  • [1] Wang H,Naghavi M,Allen C,et al. Global,regional,and national life expectancy,all-cause mortality,and cause-specific mortality for 249 causes of death,1980-2015:A systematic analysis for the global burden of disease study 2015[J]. Lancet,2016,388(10053):1459-1544. doi: 10.1016/S0140-6736(16)31012-1
    [2] Sung H,Ferlay J,Siegel R,et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA-A Cancer Journal For Clinicians,2021,70(4):1-41.
    [3] Ke H,Liang J,Zhang Y,et al. Conformational transition of fructose-1,6-bisphosphatase:Structure comparison between the AMP complex (T form) and the fructose 6-phosphate complex (R form)[J]. Biochemistry,1991,30(18):4412-4420. doi: 10.1021/bi00232a007
    [4] Moon S,Kim J,Han J,et al. Novel compound heterozygous mutations in the fructose-1,6-bisphosphatase gene cause hypoglycemia and lactic acidosis[J]. Metablism,2011,60(1):107-113. doi: 10.1016/j.metabol.2009.12.021
    [5] Gonzales P,Pisitkun T,Hoffert J,et al. Large-scale proteomics and phosphoproteomics of urinary exosomes[J]. J Am Soc Nephrol,2009,20(2):363-379. doi: 10.1681/ASN.2008040406
    [6] Consortium T U. UniProt:A worldwide hub of protein knowledge[J]. Nucleic Acids Research,2019,47(1):D506-D515. doi: 10.1093/nar/gky1049
    [7] Yánez A,Nualart F,Droppelmann C,et al. Broad expression of fructose-1,6-bisphosphatase and phosphoenolpyruvate carboxykinase provide evidence for gluconeogenesis in human tissues other than liver and kidney[J]. Journal of Cellular Physiology,2003,197(2):189-197. doi: 10.1002/jcp.10337
    [8] X L,X W,J Z,et al. Warburg effect revisited:An epigenetic link between glycolysis and gastric carcinogenesis[J]. Oncogene,2010,29(3):442-450. doi: 10.1038/onc.2009.332
    [9] Li J,Wang Y,Li Q G,et al. Downregulation of FBP1 promotes tumor metastasis and indicates poor prognosis in gastric cancer via regulating epithelial-mesenchymal transition[J]. PLoS One,2016,11(12):1-15.
    [10] Yu J,Li J,Chen Y,et al. Snail Enhances glycolysis in the epithelial-mesenchymal transition process by targeting FBP1 in gastric cancer[J]. Cell Physiol Biochem,2017,43(1):31-38. doi: 10.1159/000480314
    [11] Li B,Qiu B,Lee D S,et al. Fructose-1,6-bisphosphatase opposes renal carcinoma progression[J]. Nature,2014,513(7517):251-255. doi: 10.1038/nature13557
    [12] 洪正东,朱安义,王艳华,等. FBP1在肾透明细胞癌组织中的表达变化及意义[J]. 重庆医学,2018,47(14):44-47.
    [13] R C, X Z, G H, et al. Fructose 1, 6-bisphosphatase 1 expression reduces 18F-FDG uptake in clear cell renal cell carcinoma[J]. Contrast Media & Molecular Imaging, 2019, 2019(期?): 1-6.

    R C,X Z,G H,et al. Fructose 1,6-bisphosphatase 1 expression reduces 18F-FDG uptake in clear cell renal cell carcinoma[J]. Contrast Media & Molecular Imaging,2019,2019:1-6.
    [14] Zhu Y,Shi M,Chen H,et al. NPM1 activates metabolic changes by inhibiting FBP1 while promoting the tumorigenicity of pancreatic cancer cells[J]. Oncotarget,2015,6(25):21443-21451. doi: 10.18632/oncotarget.4167
    [15] Chen L Y,Cheng C S,Qu C,et al. CBX3 promotes proliferation and regulates glycolysis via suppressing FBP1 in pancreatic cancer[J]. Biochem Biophys Res Commun,2018,500(3):691-697. doi: 10.1016/j.bbrc.2018.04.137
    [16] Wang B,Fan P,Zhao J,et al. FBP1 loss contributes to BET inhibitors resistance by undermining c-Myc expression in pancreatic ductal adenocarcinoma[J]. J Exp Clin Cancer Res,2018,37(1):224-235. doi: 10.1186/s13046-018-0888-y
    [17] Jin X,Pan Y,Wang L,et al. Fructose-1,6-bisphosphatase inhibits ERK activation and bypasses gemcitabine resistance in pancreatic cancer by blocking IQGAP1-MAPK interaction[J]. Cancer Research,2017,77(16):4328-4341. doi: 10.1158/0008-5472.CAN-16-3143
    [18] C Y,S Z,H Y,et al. USP44 suppresses pancreatic cancer progression and overcomes gemcitabine resistance by deubiquitinating FBP1[J]. American Journal of Cancer Research,2019,9(8):1722-1733.
    [19] Chen M,Zhang J,Li N,et al. Promoter hypermethylation mediated downregulation of FBP1 in human hepatocellular carcinoma and colon cancer[J]. PLoS One,2011,6(10):1-8.
    [20] J Y,C W,F Z,et al. Loss of FBP1 facilitates aggressive features of hepatocellular carcinoma cells through the Warburg effect[J]. Carcinogenesis,2017,38(2):134-143.
    [21] Jin X,Pan Y,Wang L,et al. MAGE-TRIM28 complex promotes the warburg effect and hepatocellular carcinoma progression by targeting FBP1 for degradation[J]. Oncogenesis,2017,6(4):1-12.
    [22] Ln Y,Zy N,L W,et al. HSF2 regulates aerobic glycolysis by suppression of FBP1 in hepatocellular carcinoma[J]. American Journal of Cancer Research,2019,9(8):1607-1621.
    [23] Liu G M,Li Q,Zhang P F,et al. Restoration of FBP1 suppressed Snail-induced epithelial to mesenchymal transition in hepatocellular carcinoma[J]. Cell Death Dis,2018,9(11):1132-1141. doi: 10.1038/s41419-018-1165-x
    [24] Zhang D,Li Z,Li T,et al. miR-517a promotes Warburg effect in HCC by directly targeting FBP1[J]. Onco Targets Ther,2018,2018(11):8025-8032.
    [25] Li Q,Wei P,Wu J,et al. The FOXC1/FBP1 signaling axis promotes colorectal cancer proliferation by enhancing the Warburg effect[J]. Oncogene,2019,38(4):483-496. doi: 10.1038/s41388-018-0469-8
    [26] Iwatsuki M,Mimori K,Yokobori T,et al. Epithelial-mesenchymal transition in cancer development and its clinical significance[J]. Cancer Science,2010,101(2):293-299. doi: 10.1111/j.1349-7006.2009.01419.x
    [27] Dong C,Yuan T,Wu Y,et al. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer[J]. Cancer Cell,2013,23(3):316-331. doi: 10.1016/j.ccr.2013.01.022
    [28] Li K, Ying M, Feng D, et al. Fructose-1, 6-bisphosphatase is a novel regulator of Wnt/beta-Catenin pathway in breast cancer[J]. Biomed Pharmacother, 2016, 84(期?): 1144-1149.

    Li K,Ying M,Feng D,et al. Fructose-1,6-bisphosphatase is a novel regulator of Wnt/beta-Catenin pathway in breast cancer[J]. Biomed Pharmacother,2016,84:1144-1149.
    [29] Shi L,He C,Li Z,et al. FBP1 modulates cell metabolism of breast cancer cells by inhibiting the expression of HIF-1alpha[J]. Neoplasma,2017,64(4):535-542. doi: 10.4149/neo_2017_407
    [30] Fu D,Li J,Wei J,et al. HMGB2 is associated with malignancy and regulates Warburg effect by targeting LDHB and FBP1 in breast cancer[J]. Cell Commun Signal,2018,16(1):8-17. doi: 10.1186/s12964-018-0219-0
    [31] Shi L,Zhao C,Pu H,et al. FBP1 expression is associated with basal-like breast carcinoma[J]. Oncol Lett,2017,13(5):3046-3056. doi: 10.3892/ol.2017.5860
    [32] Chen J,Lee H-J,Wu X,et al. Gain of glucose-independent growth upon metastasis of breast cancer cells to the brain[J]. Cancer Research,2015,75(3):554-565. doi: 10.1158/0008-5472.CAN-14-2268
    [33] Sheng H,Ying L,Zheng L,et al. Down expression of FBP1 is a negative prognostic factor for non-small-cell lung cancer[J]. Cancer Invest,2015,33(5):197-204. doi: 10.3109/07357907.2015.1020385
    [34] Zhang J,Wang J,Xing H,et al. Down-regulation of FBP1 by ZEB1-mediated repression confers to growth and invasion in lung cancer cells[J]. Mol Cell Biochem,2016,411(1):331-340.
    [35] Dong Y,Huaying S,Danying W,et al. Significance of methylation of FBP1 gene in non-small cell lung cancer[J]. Biomed Res Int,2018,2018(9):1-9.
    [36] Dai Q,Li N,Zhou X. Increased miR-21a provides metabolic advantages through suppression of FBP1 expression in non-small cell lung cancer cells[J]. Am J Cancer Res,2017,7(11):2121-2130.
  • [1] 吴琼, 李娜, 徐瑜涓.  基于Citespace肝癌症状群文献可视化分析, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20241109
    [2] 王海军, 邱良武, 习杨彦彬, 庞俊娣.  有氧运动干预慢性脑缺血学习记忆能力研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240328
    [3] 霍玉, 鞠云鹤, 王宇涛, 曾雅林, 梁俊峰.  DDX46在恶性肿瘤发生发展中的作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20241123
    [4] 李婷, 郭维华.  糖酵解重编程在口腔鳞状细胞癌中的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230611
    [5] 王群, 孙雨欣, 王海峰.  脂滴表面蛋白perilipin家族在癌症中的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230812
    [6] 王英宝, 李晓云, 谭莹, 杨萌, 史云强, 平秦榕, 胡礼炳, 杨洋, 王春晖.  青蒿素调控ENO2介导的肾透明细胞癌细胞有氧糖酵解的机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231102
    [7] 张玮, 王保全, 雷喜锋, 王旭, 张梁.  miR-125b-5p调控HK2抑制胆囊癌细胞增殖和糖酵解, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20221206
    [8] 曾怡, 廖云娟, 李颖, 何振坤.  达格列净治疗早期糖尿病肾病的疗效及对血清MCP-1、IL-6水平的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20211218
    [9] 李晨, 马东艳, 李飞丽, 何敏, 杨娜, 麦晓蓉, 杨春梅.  基于表达性艺术治疗的女性癌症病房照护模式创新与实践, 昆明医科大学学报.
    [10] 杨荆, 王淑娴, 周竹.  有氧运动与营养管理对维持性血透患者营养不良的疗效, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20201123
    [11] 周灵, 左瑞玲, 马莉, 杨艳阳, 胡雪姣, 谢琳.  癌症患者化疗前焦虑对化疗后恶心呕吐的影响, 昆明医科大学学报.
    [12] 吴江, 王云华, 姚丽琴, 费严焰, 谢杉, 石涛.  情境式健康教育模式在癌症患者疼痛教育中的应用, 昆明医科大学学报.
    [13] 吴夕, 徐婷婷, 沈丽达, 谢琳, 胡凤娣, 龙庭凤, 董坚.  云南省贫困、偏远、少数民族聚集地区癌症相关危险因素现状调查, 昆明医科大学学报.
    [14] 沈志祥, 朱立勋, 徐伟红.  有氧运动对2型糖尿病大鼠AGE-RAGE轴及NF-κB通路的影响, 昆明医科大学学报.
    [15] 周玲, 钟琼, 王敏, 谭思, 刘永秀.  医联体医护一体化在癌症患者居家镇痛中的应用, 昆明医科大学学报.
    [16] 朱宇, 何易晓, 杨丽娟, 王芳.  钙离子稳态失调与癌症增殖转移关系的研究进展, 昆明医科大学学报.
    [17] 胡玉崇, 陆景坤, 崔梦瑶.  PTEN及Caspase-3可能参与卵巢癌铂类耐药的机制, 昆明医科大学学报.
    [18] 罗赛美.  癌症患者生命质量测定量表体系之前列腺癌量表QLICP-PR的条目筛选, 昆明医科大学学报.
    [19] 张照莉.  癌症患者心理痛苦动态评估及干预的实践, 昆明医科大学学报.
    [20] 李丹娜.  癌症患者生命质量的纵向研究现状, 昆明医科大学学报.
  • 加载中
计量
  • 文章访问数:  2847
  • HTML全文浏览量:  2673
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-15
  • 刊出日期:  2021-12-25

目录

/

返回文章
返回