留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肠道菌群代谢物脱氧胆酸对人脐带间充质干细胞hUC-MSCs增殖及细胞周期的影响

梁彩红 孟明耀 李欣欣 熊晶晶 李檬 刘梅 侯宗柳 黄永坤

梁彩红, 孟明耀, 李欣欣, 熊晶晶, 李檬, 刘梅, 侯宗柳, 黄永坤. 肠道菌群代谢物脱氧胆酸对人脐带间充质干细胞hUC-MSCs增殖及细胞周期的影响[J]. 昆明医科大学学报, 2023, 44(4): 23-30. doi: 10.12259/j.issn.2095-610X.S20230402
引用本文: 梁彩红, 孟明耀, 李欣欣, 熊晶晶, 李檬, 刘梅, 侯宗柳, 黄永坤. 肠道菌群代谢物脱氧胆酸对人脐带间充质干细胞hUC-MSCs增殖及细胞周期的影响[J]. 昆明医科大学学报, 2023, 44(4): 23-30. doi: 10.12259/j.issn.2095-610X.S20230402
Caihong LIANG, Mingyao MENG, Xinxin LI, Jingjing XIONG, Meng LI, Mei LIU, Zongliu HOU, Yongkun HUANG. Effect of Intestinal Flora Metabolites Deoxycholic Acid on the Proliferation and Cell Cycle of Human Umbilical Cord Mesenchymal Stem Cells[J]. Journal of Kunming Medical University, 2023, 44(4): 23-30. doi: 10.12259/j.issn.2095-610X.S20230402
Citation: Caihong LIANG, Mingyao MENG, Xinxin LI, Jingjing XIONG, Meng LI, Mei LIU, Zongliu HOU, Yongkun HUANG. Effect of Intestinal Flora Metabolites Deoxycholic Acid on the Proliferation and Cell Cycle of Human Umbilical Cord Mesenchymal Stem Cells[J]. Journal of Kunming Medical University, 2023, 44(4): 23-30. doi: 10.12259/j.issn.2095-610X.S20230402

肠道菌群代谢物脱氧胆酸对人脐带间充质干细胞hUC-MSCs增殖及细胞周期的影响

doi: 10.12259/j.issn.2095-610X.S20230402
基金项目: 云南省检验医学重点实验室开放课题基金资助项目(2017DG005)
详细信息
    作者简介:

    梁彩红(1996~),女,广东湛江人,在读硕士研究生,主要从事胃肠肝脏及微生态研究工作

    通讯作者:

    黄永坤,E-mail:hykkmyncnwd@163.com

  • 中图分类号: Q939.121

Effect of Intestinal Flora Metabolites Deoxycholic Acid on the Proliferation and Cell Cycle of Human Umbilical Cord Mesenchymal Stem Cells

  • 摘要:     目的   探讨肠道菌群代谢物次级胆汁酸DCA不同浓度和不同作用时间在体外环境下对人脐带间充质干细胞(human umbilical cord mesenchymal stem cells,hUC-MSCs)增殖和细胞周期的影响。    方法   CCK8及流式细胞仪检测在含不同浓度DCA(0.00 μmol/L、1.56 μmol/L、3.13 μmol/L、6.25 μmol/L、12.50 μmol/L、25.00 μmol/L、50.00 μmol/L、100.00 μmol/L、200.00 μmol/L、400.00 μmol/L、800.00 μmol/L)干细胞培养基中培养hUC-MSCs 24 h、48 h、72 h后,干细胞增殖及细胞周期的变化。    结果   脱氧胆酸对hUC-MSCs增殖的影响体现在DCA剂量和作用时间两方面(两者交互作用,F = 6.622,P < 0.001);当浓度一定时,时间越长,细胞增殖越多;当作用时间一定时,浓度越高,细胞增殖抑制。浓度一定时,随时间的增加,细胞阻滞在G0/G1期的比例增加(P < 0.001);不同作用时间DCA对 hUC-MSCs的细胞周期表现为低浓度组细胞阻滞在G0/G1期和S期,高浓度组细胞阻滞在S期和G2/M期(P < 0.001)。    结论   体外环境下,DCA对hUC-MSCs增殖及细胞周期的影响与浓度和作用时间相关。
  • 图  1  脱氧胆酸不同浓度及不同作用时间对 hUC-MSCs 增殖的影响

    A:脱氧胆酸不同浓度及不同作用时间对 hUC-MSCs 增殖的影响;B:不同浓度脱氧胆酸作用 24 h 时 hUC-MSCs增殖情况;C:不同浓度脱氧胆酸作用48 h时hUC-MSCs增殖情况;D:不同浓度脱氧胆酸作用72 h时hUC-MSCs 增殖情况。各浓度组与0.00 μmol/L浓度组比较,ns表示差异无统计学意义,*表示 P < 0.05,**表示 P < 0.01,***表示 P < 0.001,****表示 P < 0.0001。

    Figure  1.  Effects of DCA with different concentration and different time on the proliferation of hUC- MSCs

    图  2  脱氧胆酸不同浓度及不同作用时间 hUC-MSCs 细胞周期分布情况

    Figure  2.  Cell cycle proportion of hUC-MSCs with different concentration and different time of DCA

    图  3  不同浓度及不同作用时间脱氧胆酸刺激后流式细胞技术检测 hUC-MSCs 细胞周期代表图例

    A~D:24 h时脱氧胆酸0.00 μmol/L~400.00 μmol/L hUC-MSCs细胞周期分布情况;E~H:48 h时脱氧胆酸0.00 μmol/L~400.00 μmol/L hUC-MSCs细胞周期分布情况;I~L:72 h时脱氧胆酸0.00 μmol/L~400.00 μmol/L hUC-MSCs细胞周期分布情况。

    Figure  3.  Cell cycle of hUC-MSCs tested by flow cytometry after different concentration and different time of DCA

    表  1  脱氧胆酸不同浓度及不同作用时间hUC-MSCs吸光度值(OD450nm值)($\bar x \pm s $

    Table  1.   Absorbance (OD450nm) of hUC-MSCs at different dose and time of DCA ($\bar x \pm s $

    脱氧胆酸浓度(μmol/L)样本数24 h48 h72 h
    0.00(对照组) 45 0.61 ± 0.12 0.77 ± 0.14* 0.97 ± 0.32○*
    1.56 45 0.51 ± 0.07 0.79 ± 0.19* 1.23 ± 0.24○*
    3.13 45 0.54 ± 0.08 0.79 ± 0.21* 1.01 ± 0.31○*
    6.25 45 0.56 ± 0.09 0.80 ± 0.16* 1.05 ± 0.33○*
    12.50 45 0.55 ± 0.05 0.81 ± 0.07* 1.18 ± 0.28○*
    25.00 45 0.55 ± 0.07 0.78 ± 0.13* 1.21 ± 0.20○*
    50.00 45 0.57 ± 0.08 0.77 ± 0.03* 1.07 ± 0.24○*
    100.00 45 0.58 ± 0.08 0.75 ± 0.16* 1.05 ± 0.23○*
    200.00 44 0.58 ± 0.09 0.72 ± 0.16 0.84 ± 0.26*
    400.00 45 0.50 ± 0.10 0.54 ± 0.19 0.53 ± 0.17
    800.00 45 0.49 ± 0.12 0.48 ± 0.18 0.49 ± 0.18
      与24 h比较,*P < 0.05;与48 h比较,P < 0.05。
    下载: 导出CSV

    表  2  脱氧胆酸不同浓度及不同作用时间 hUC-MSCs 细胞周期比例(%)

    Table  2.   Cell cycle ratio of hUC-MSCs with different concentration and different time of DCA (%)

    时间
    (h)
    分期0.00
    μmol/L
    1.56
    μmol/L
    25.00
    μmol/L
    400.00
    μmol/L
    24 G0/G1期 77.60 82.33* 83.77* 48.17*
    S期 16.48 17.67 16.23 51.83*
    G2/M期 5.91 0.00* 0.00* 0.00*
    48 G0/G1期 87.07 92.85*△ 85.73*△ 42.99*△
    S期 5.45 2.92*△ 14.27*△ 50.89*
    G2/M期 7.48 4.23*△ 0.00* 6.12*△
    72 G0/G1期 97.60 98.19*△ 98.41*△ 73.14*△
    S期 2.40 1.81*△ 1.59*△ 22.70*△
    G2/M期 0.00 0.00 0.00 4.16*△
      与0.00 µmol/L比较,*P < 0.0001;与24 h比较,P < 0.0001。
    下载: 导出CSV
  • [1] Ridlon J M,Kang D J,Hylemon P B. Bile salt biotransformations by human intestinal bacteria[J]. J Lipid Res,2006,47(2):241-259. doi: 10.1194/jlr.R500013-JLR200
    [2] Huang D,Xiong M,Xu X,et al. Bile acids elevated by high-fat feeding induce endoplasmic reticulum stress in intestinal stem cells and contribute to mucosal barrier damage[J]. Biochem Biophys Res Commun,2020,529(2):289-295. doi: 10.1016/j.bbrc.2020.05.226
    [3] Salim S Y,Soderholm J D. Importance of disrupted intestinal barrier in inflammatory bowel diseases[J]. Inflamm Bowel Dis,2011,17(1):362-381. doi: 10.1002/ibd.21403
    [4] Wang Z,Litterio M C,Muller M,et al. (-)-Epicatechin and NADPH oxidase inhibitors prevent bile acid-induced Caco-2 monolayer permeabilization through ERK1/2 modulation[J]. Redox Biol,2020,28:101360. doi: 10.1016/j.redox.2019.101360
    [5] Zeng H,Safratowhich B D,Cheng W H,et al. Deoxycholic acid modulates cell-junction gene expression and increases intestinal barrier dysfunction[J]. Molecules,2022,27(3):723. doi: 10.3390/molecules27030723
    [6] Jiao Y,Sun Y T,Chen N F,et al. Human umbilical cord-derived mesenchymal stem cells promote repair of neonatal brain injury caused by hypoxia/ischemia in rats[J]. Neural Regen Res,2022,17(11):2518-2525. doi: 10.4103/1673-5374.339002
    [7] Ma C,Feng Y,Yang L,et al. In vitro immunomodulatory effects of human umbilical cord-derived mesenchymal stem cells on peripheral blood cells from warm autoimmune hemolytic anemia patients[J]. Acta Haematol,2022,145(1):63-71. doi: 10.1159/000506759
    [8] Chen Y,Hu Y,Zhou X,et al. Human umbilical cord-derived mesenchymal stem cells ameliorate psoriasis-like dermatitis by suppressing IL-17-producing gammadelta T cells[J]. Cell Tissue Res,2022,388(3):549-563. doi: 10.1007/s00441-022-03616-x
    [9] Guo G,Tan Z,Liu Y,et al. The therapeutic potential of stem cell-derived exosomes in the ulcerative colitis and colorectal cancer[J]. Stem Cell Res Ther,2022,13(1):138. doi: 10.1186/s13287-022-02811-5
    [10] Li X,Wang Q,Ding L,et al. Intercellular adhesion molecule-1 enhances the therapeutic effects of MSCs in a dextran sulfate sodium-induced colitis models by promoting MSCs homing to murine colons and spleens[J]. Stem Cell Res Ther,2019,10(1):267. doi: 10.1186/s13287-019-1384-9
    [11] Franzosa E A,Sirota-Madi A,Avila-Pacheco J,et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease[J]. Nat Microbiol,2019,4(2):293-305.
    [12] Appleby R N,Walters J R. The role of bile acids in functional GI disorders[J]. Neurogastroenterol Motil,2014,26(8):1057-1069. doi: 10.1111/nmo.12370
    [13] Wahlstrom A,Sayin S I,Marschall H U,et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism[J]. Cell Metab,2016,24(1):41-50. doi: 10.1016/j.cmet.2016.05.005
    [14] Kuenzig M E,Fung S G,Marderfeld L,et al. Twenty-first century trends in the global epidemiology of pediatric-onset inflammatory bowel disease:Systematic review[J]. Gastroenterology,2022,162(4):1147-1159.e4. doi: 10.1053/j.gastro.2021.12.282
    [15] Carroll M W,Kuenzig M E,Mack D R,et al. The impact of inflammatory bowel disease in Canada 2018:Children and adolescents with IBD[J]. J Can Assoc Gastroenterol,2019,2(Suppl 1):S49-S67.
    [16] Yaghooti H,Mohammadtaghvaei N,Mahboobnia K. Effects of palmitate and astaxanthin on cell viability and proinflammatory characteristics of mesenchymal stem cells[J]. Int Immunopharmacol,2019,68:164-170. doi: 10.1016/j.intimp.2018.12.063
    [17] Lopez Perez R,Munz F,Vidoni D,et al. Mesenchymal stem cells preserve their stem cell traits after exposure to antimetabolite chemotherapy[J]. Stem Cell Res,2019,40:101536. doi: 10.1016/j.scr.2019.101536
    [18] Zeng H,Claycombe K J,Reindl K M. Butyrate and deoxycholic acid play common and distinct roles in HCT116 human colon cell proliferation[J]. J Nutr Biochem,2015,26(10):1022-1028. doi: 10.1016/j.jnutbio.2015.04.007
    [19] 吴二斌,杨海波,鲁亚芳,等. 脱氧胆酸对人胃癌BGC-823细胞凋亡的作用[J]. 广东医学,2016,37(12):1795-1798. doi: 10.13820/j.cnki.gdyx.2016.12.004
    [20] Gandola Y B,Fontana C,Bojorge M A,et al. Concentration-dependent effects of sodium cholate and deoxycholate bile salts on breast cancer cells proliferation and survival[J]. Mol Biol Rep,2020,47(5):3521-3539. doi: 10.1007/s11033-020-05442-2
    [21] Zhang G,Zhang J,Shang D,et al. Deoxycholic acid inhibited proliferation and induced apoptosis and necrosis by regulating the activity of transcription factors in rat pancreatic acinar cell line AR42J[J]. In Vitro Cell Dev Biol Anim,2015,51(8):851-856. doi: 10.1007/s11626-015-9907-x
    [22] Wang L,Gong Z,Zhang X,et al. Gut microbial bile acid metabolite skews macrophage polarization and contributes to high-fat diet-induced colonic inflammation[J]. Gut Microbes,2020,12(1):1-20.
    [23] Edelstein A,Fink D,Musch M,et al. Protective effects of nonionic triblock copolymers on bile acid-mediated epithelial barrier disruption[J]. Shock,2011,36(5):451-457. doi: 10.1097/SHK.0b013e31822d8de1
    [24] Jian J,Nie M T,Xiang B,et al. Rifaximin ameliorates non-alcoholic steatohepatitis in mice through regulating gut microbiome-related bile acids[J]. Frontiers in Pharmacology,2022,13:841132. doi: 10.3389/fphar.2022.841132
    [25] Yang M,Gu Y,Li L,et al. Bile acid-gut microbiota axis in inflammatory bowel disease:From bench to bedside[J]. Nutrients,2021,13(9):3143. doi: 10.3390/nu13093143
    [26] Mens M M J,Ghanbari M. Cell cycle regulation of stem cells by MicroRNAs[J]. Stem Cell Rev Rep,2018,14(3):309-322. doi: 10.1007/s12015-018-9808-y
    [27] Yang H B,Song W,Cheng M D,et al. Deoxycholic acid inhibits the growth of BGC-823 gastric carcinoma cells via a p53 mediated pathway[J]. Mol Med Rep,2015,11(4):2749-2754. doi: 10.3892/mmr.2014.3004
    [28] Barta T,Dolezalova D,Holubcova Z,et al. Cell cycle regulation in human embryonic stem cells: Links to adaptation to cell culture[J]. Exp Biol Med (Maywood),2013,238(3):271-275. doi: 10.1177/1535370213480711
  • [1] 邓勇军, 陈倩, 邹建彬, 宫政, 刘焕鹏.  ZIC1基因过表达激活P53信号通路抑制胸膜间皮瘤细胞增殖, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240405
    [2] 李媛媛, 宋亚贤, 徐玉善, 曾晓甫, 袁惠, 徐兆, 江艳.  肠道菌群代谢物TMAO与非酒精性脂肪性肝病的关系, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240210
    [3] 郭小兵, 李晓文, 李恒希, 曹艳, 李坪.  miR-212-3p靶向调控NAP1L1抑制胶质瘤细胞增殖、迁移和上皮-间充质转化, 昆明医科大学学报.
    [4] 王惠, 曾文珺, 张海萍, 郭瑞威.  钙库操纵型钙通道Orai3分子对冠状动脉血管平滑肌细胞增殖的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230423
    [5] 张莉, 赵熙, 赵华祥, 熊宝, 徐洁, 汤广平, 喻卓, 陈鹏.  卫茅碱对人血管内皮细胞及血管平滑肌细胞增殖、迁移及细胞周期的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230723
    [6] 钱石兵, 孟明耀, 于鸿滨, 段开文, 李昌全, 夏志刚.  三七总皂苷对人根尖牙乳头干细胞增殖的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20221018
    [7] 王晓寒, 牟善茂, 郝翠芳, 任琳琳, 王敏, 赵彤.  富血小板血浆促进人子宫内膜间充质干细胞(EnMSCs)增殖的机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220126
    [8] 袁伟, 孟明耀, 李欣欣, 熊晶晶, 李檬, 曹佳, 刘梅, 侯宗柳, 黄永坤.  内毒素的量效和时效对人脐带间充质干细胞增殖的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220928
    [9] 殷顺会, 周建忠, 李自良.  Tiger17促进口腔黏膜成纤维细胞的增殖和迁移, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210823
    [10] 古利明, 曾勇, 陈俊辉, 王福平, 郝应禄, 吴海鹰, 阮继银, 李燕皎, 陈云, 夏婧, 孙佳, 胡隽源, 李薇, 余从涛, 马朝霞, 钱传云, 胡敏.  人脐带间充质干细胞联合抗病毒等方法治疗新型冠状病毒肺炎, 昆明医科大学学报.
    [11] 柏春玲, 廖泽容, 张巧, 董馨忆.  应用流式细胞术快速测定细胞周期的DNA一步法, 昆明医科大学学报.
    [12] 戈佳云.  慢病毒介导的FHIT基因过表达调控人肝癌细胞株生长实验研究, 昆明医科大学学报.
    [13] 胡正雄.  TGF-β2和geneX对BrdU标记骨髓间充质干细胞增殖与成骨分化的作用, 昆明医科大学学报.
    [14] 袁勇.  适度低氧微环境对体外培养脑胶质瘤干细胞生长的影响, 昆明医科大学学报.
    [15] 张健.  盐霉素对人骨肉瘤MG-63细胞体外增殖和凋亡的影响, 昆明医科大学学报.
    [16] 倪滔.  改良贴壁组织块法与改良I型胶原酶消法对成骨细胞增殖效果的比较研究, 昆明医科大学学报.
    [17] 刘韬.  Corilagin对HUVEC增殖及细胞周期的影响, 昆明医科大学学报.
    [18] 赵瑜敏.  牙龈卟啉单胞菌对兔血管平滑肌细胞增殖和迁移的影响, 昆明医科大学学报.
    [19] TRB3在同型半胱氨酸抑制内皮细胞增殖中的作用研究, 昆明医科大学学报.
    [20] 低氧诱导对人肝癌SMMC7721细胞生物学行为的影响, 昆明医科大学学报.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  3562
  • HTML全文浏览量:  2071
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-05
  • 网络出版日期:  2023-04-19
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回