留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FGF2通过PERK/EIF2α/ATF4信号通路调节缺氧诱导的巩膜成纤维细胞增殖和胶原代谢

翟瑜如 白艳 李云云

翟瑜如, 白艳, 李云云. FGF2通过PERK/EIF2α/ATF4信号通路调节缺氧诱导的巩膜成纤维细胞增殖和胶原代谢[J]. 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20241004
引用本文: 翟瑜如, 白艳, 李云云. FGF2通过PERK/EIF2α/ATF4信号通路调节缺氧诱导的巩膜成纤维细胞增殖和胶原代谢[J]. 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20241004
Yuru ZHAI, Yan BAI, Yunyun LI. FGF2 Regulates Hypoxia-Induced Proliferation and Collagen Metabolism of Scleral Fibroblasts Through the PERK/EIF2α/ATF4 Signaling Pathway[J]. Journal of Kunming Medical University. doi: 10.12259/j.issn.2095-610X.S20241004
Citation: Yuru ZHAI, Yan BAI, Yunyun LI. FGF2 Regulates Hypoxia-Induced Proliferation and Collagen Metabolism of Scleral Fibroblasts Through the PERK/EIF2α/ATF4 Signaling Pathway[J]. Journal of Kunming Medical University. doi: 10.12259/j.issn.2095-610X.S20241004

FGF2通过PERK/EIF2α/ATF4信号通路调节缺氧诱导的巩膜成纤维细胞增殖和胶原代谢

doi: 10.12259/j.issn.2095-610X.S20241004
基金项目: 山西省卫健委基金资助项目(2018132)
详细信息
    作者简介:

    翟瑜如(1984~),女,山西长治人,医学硕士,主治医师,主要从事眼科临床工作

    通讯作者:

    李云云,E-mail:369527908@qq.com

  • 中图分类号: R778.1+1

FGF2 Regulates Hypoxia-Induced Proliferation and Collagen Metabolism of Scleral Fibroblasts Through the PERK/EIF2α/ATF4 Signaling Pathway

  • 摘要:   目的  研究FGF2对缺氧诱导的巩膜成纤维细胞(scleral fibroblasts,SF)增殖和胶原的影响并探讨其可能调节的下游信号通路。  方法  用5% O2刺激SF 24 h诱导近视SF模型,RT-qPCR检测FGF2 mRNA表达,Western blot检测FGF2蛋白表达。细胞计数试剂盒8(Cell Count Kit-8,CCK-8)、流式细胞术和Western blot分别检测细胞增殖活力、细胞凋亡和胶原代谢相关蛋白collagen Ⅰ、MMP2以及通路蛋白PERK、p-PERK、EIF2α、EIF2α、ATF4表达。  结果  缺氧刺激可促进FGF2 mRNA和蛋白表达升高(P < 0.01)并激活PERK/EIF2α/ATF4通路(P < 0.001),抑制SF细胞增殖(P < 0.001)和collagen Ⅰ表达(P < 0.001),诱导MMP2表达(P < 0.001)及细胞凋亡(P < 0.001)。敲降FGF2或经PERK抑制剂GSK2606414处理可逆转缺氧对SF细胞的作用,促进细胞增殖活力(P < 0.001)和collagen Ⅰ表达(P < 0.01),减少细胞凋亡(P < 0.01)。  结论  FGF2通过调节PERK/EIF2α/ATF4通路的激活,影响缺氧诱导的SF增殖及胶原代谢。
  • 图  1  FGF2在缺氧诱导的SF中高表达

    A:缺氧诱导的SF中FGF2 mRNA相对表达;B:缺氧诱导的SF中FGF2蛋白表达电泳图。C:FGF2蛋白表达统计学分析。**P < 0.01。Ctrl:正常对照组,Hypoxia:缺氧组。

    Figure  1.  Overexpression of FGF2 in hypoxia-induced SF

    图  2  FGF2调控缺氧诱导的SF增殖和胶原代谢

    A:转染si-FGF2的SF中FGF2蛋白相对表达水平;B:细胞增殖活力;C~D:细胞凋亡率;E:collagen Ⅰ和MMP2蛋白表达电泳图;F:collagen Ⅰ和MMP2蛋白表达统计学分析;G:PERK、p-PERK、EIF2α、p-EIF2α、ATF4蛋白表达电泳图;H:p-PERK/PERK蛋白表达统计学分析;I:p-EIF2α/EIF2α蛋白表达统计学分析;J:ATF4蛋白表达统计学分析。*P < 0.05,**P < 0.01,***P < 0.001。Ctrl:正常对照组,Hypoxia:缺氧组。

    Figure  2.  FGF2 regulates proliferation and collagen metabolism in hypoxia-induced SF

    图  3  PERK/EIF2α/ATF4通路调控缺氧诱导的SF增殖及胶原代谢

    A:PERK、p-PERK、EIF2α、p-EIF2α、ATF4蛋白的蛋白表达电泳图;B:p-PERK/PERK蛋白表达统计学分析;C:p-EIF2α/EIF2α蛋白表达统计学分析;D:ATF4蛋白表达统计学分析;E:细胞增殖活力;F:细胞凋亡率统计;G:细胞凋亡图;H:collagen Ⅰ和MMP2蛋白表达电泳图:I:collagen Ⅰ蛋白表达统计学分析;J:MMP2蛋白表达统计学分析。*P < 0.05,**P < 0.01,***P < 0.001。Ctrl:正常对照组,Hypoxia:缺氧组。

    Figure  3.  PERK/EIF2α/ATF4 pathway regulates proliferation and collagen metabolism in hypoxia-induced SF

    表  1  引物序列

    Table  1.   Primer sequences

    目的基因 引物序列
    (F: Forward,R: Reverse,5’-3’)
    FGF2 F: GTCAAACTACAACTCCAAGCAG
    R: GAAACACTCTTCTGTAACACACTT
    GAPDH F: GTGGAGTCATACTGGAACATGTAG
    R: AATGGTGAAGGTCGGTGTG
    下载: 导出CSV
  • [1] Karthikeyan S K,Ashwini D L,Priyanka M,et al. Physical activity,time spent outdoors,and near work in relation to myopia prevalence,incidence,and progression: An overview of systematic reviews and meta-analyses[J]. Indian J Ophthalmol,2022,70(3):728-739. doi: 10.4103/ijo.IJO_1564_21
    [2] Karl A,Makarov F N,Koch C,et al. The ultrastructure of rabbit sclera after scleral crosslinking with riboflavin and blue light of different intensities[J]. Graefes Arch Clin Exp Ophthalmol,2016,254(8):1567-1577. doi: 10.1007/s00417-016-3393-z
    [3] Shi W Q,Li T,Liang R,et al. Targeting scleral remodeling and myopia development in form deprivation myopia through inhibition of EFEMP1 expression[J]. Biochim Biophys Acta Mol Basis Dis,2024,1870(3):166981. doi: 10.1016/j.bbadis.2023.166981
    [4] Lin X,Lei Y,Pan M,et al. Augmentation of scleral glycolysis promotes myopia through histone lactylation[J]. Cell Metab,2024,36(3): 511-525. e7.
    [5] Xue M,Li B,Lu Y,et al. FOXM1 participates in scleral remodeling in myopia by upregulating APOA1 expression through METTL3/YTHDF2[J]. Invest Ophthalmol Vis Sci,2024,65(1): 19.
    [6] Wang X,Hui Q,Jin Z,et al. Roles of growth factors in eye development and ophthalmic diseases[J]. Zhejiang Da Xue Xue Bao Yi Xue Ban,2022,51(5):613-625.
    [7] Qin Y,Liu T,Zhang Z,et al. Scleral remodeling in early adulthood: the role of FGF-2[J]. Sci Rep,2023,13(1):20779. doi: 10.1038/s41598-023-48264-5
    [8] An J,Hsi E,Zhou X,et al. The FGF2 gene in a myopia animal model and human subjects[J]. Mol Vis,2012,18:471-478.
    [9] Kolodeeva O E, Kolodeeva O E, Averinskaya D A, et al. Induction of the PERK-eIF2α-ATF4 pathway in M1 macrophages under endoplasmic reticulum stress[J]. Dokl Biochem Biophys, 2024, 517(1): 264-268.

    Kolodeeva O E,Kolodeeva O E,Averinskaya D A,et al. Induction of the PERK-eIF2α-ATF4 pathway in M1 macrophages under endoplasmic reticulum stress[J]. Dokl Biochem Biophys,2024,517(1): 264-268.
    [10] Wu H,Chen W,Zhao F,et al. Scleral hypoxia is a target for myopia control[J]. Proc Natl Acad Sci U S A,2018,115(30):7091-7100.
    [11] Ikeda S I,Kurihara T,Jiang X,et al. Scleral PERK and ATF6 as targets of myopic axial elongation of mouse eyes[J]. Nat Commun,2022,13(1):5859. doi: 10.1038/s41467-022-33605-1
    [12] Holden B A,Fricke T R,Wilson D A,et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[J]. Ophthalmology,2016,123(5):1036-1042. doi: 10.1016/j.ophtha.2016.01.006
    [13] Cooper J,Tkatchenko A V. A Review of current concepts of the etiology and treatment of myopia[J]. Eye Contact Lens,2018,44(4):231-247. doi: 10.1097/ICL.0000000000000499
    [14] Wang X,Fan W,Li N,et al. YY1 lactylation in microglia promotes angiogenesis through transcription activation-mediated upregulation of FGF2[J]. Genome Biol,2023,24(1):87. doi: 10.1186/s13059-023-02931-y
    [15] Lee J,Jung E,Heur M. Injury induces endothelial to mesenchymal transition in the mouse corneal endothelium in vivo via FGF2[J]. Mol Vis,2019,25:22-34.
    [16] Lee J G,Heur M. Interleukin-1β enhances cell migration through AP-1 and NF-κB pathway-dependent FGF2 expression in human corneal endothelial cells[J]. Biol Cell,2013,105(4):175-189. doi: 10.1111/boc.201200077
    [17] Flokis M,Lovicu F J. FGF-2 Differentially Regulates Lens Epithelial Cell Behaviour during TGF-β-Induced EMT[J]. Cells,2023,12(6):110.
    [18] Shao Z,Wu J,Du G,et al. Young bone marrow Sca-1 cells protect aged retina from ischaemia-reperfusion injury through activation of FGF2[J]. J Cell Mol Med,2018,22(12):6176-6189. doi: 10.1111/jcmm.13905
    [19] Walter P,Ron D. The unfolded protein response: from stress pathway to homeostatic regulation[J]. Science,2011,334(6059):1081-1086. doi: 10.1126/science.1209038
    [20] Wan H,Wang Q,Chen X,et al. WDR45 contributes to neurodegeneration through regulation of ER homeostasis and neuronal death[J]. Autophagy,2020,16(3):531-547. doi: 10.1080/15548627.2019.1630224
    [21] Raines L N,Zhao H,Wang Y,et al. PERK is a critical metabolic hub for immunosuppressive function in macrophages[J]. Nat Immunol,2022,23(3):431-445. doi: 10.1038/s41590-022-01145-x
    [22] Shi S,Ding C,Zhu S,et al. PERK inhibition suppresses neovascularization and protects neurons during ischemia-induced retinopathy[J]. Invest Ophthalmol Vis Sci,2023,64(11):17. doi: 10.1167/iovs.64.11.17
  • [1] 秦祥川, 李金秋, 黄晓婧, 忽吐比丁·库尔班, 阿仙姑·哈斯木.  HPV E6通过Rap1信号通路影响宫颈癌细胞增殖、侵袭及迁移的研究, 昆明医科大学学报. 2024, 45(9): 9-16. doi: 10.12259/j.issn.2095-610X.S20240902
    [2] 王玲, 秦祥川, 李金秋, 阿仙姑·哈斯木.  CD147通过AIM2炎症小体介导宫颈癌细胞焦亡和增殖, 昆明医科大学学报. 2024, 45(1): 15-21. doi: 10.12259/j.issn.2095-610X.S20240103
    [3] 张紫微, 郑甲林, 许晓宇, 王红.  二甲双胍通过AMPK/PPAR-γ通路诱导自噬抑制高糖对血管平滑肌细胞的增殖作用, 昆明医科大学学报. 2023, 44(10): 60-66. doi: 10.12259/j.issn.2095-610X.S20231026
    [4] 杨诗媛, 张昊, 胡图强.  扁塑藤素通过调节自噬对口腔鳞状细胞癌细胞CAL-27增殖的影响, 昆明医科大学学报. 2023, 44(10): 92-99. doi: 10.12259/j.issn.2095-610X.S20231024
    [5] 张晔琳, 马丽娅, 彭旭晖, 杨禾丰, 佘睿.  hsa-let-7a-5p调控牙周膜干细胞增殖及凋亡, 昆明医科大学学报. 2023, 44(10): 47-54. doi: 10.12259/j.issn.2095-610X.S20231028
    [6] 张梁, 王保全, 雷喜锋, 王旭, 柯阳, 张玮.  miR-29c-3p/IGF1分子轴对肝星状细胞活化,增殖和凋亡的作用机制, 昆明医科大学学报. 2023, 44(9): 7-14. doi: 10.12259/j.issn.2095-610X.S20230926
    [7] 王保全, 张伟, 田园, 雷喜锋, 王旭.  miR-142-5p通过CCND1调控胆囊癌细胞的增殖和转移, 昆明医科大学学报. 2022, 43(2): 47-53. doi: 10.12259/j.issn.2095-610X.S20220223
    [8] 廖周俊, 杨少华, 刘立鑫, 胡晟, 陈轶晖, 康强, 张小文.  AK4对肝内胆管癌细胞HUCCT1增殖、迁移的影响, 昆明医科大学学报. 2022, 43(6): 1-6. doi: 10.12259/j.issn.2095-610X.S20220611
    [9] 赵斌, 段元鹏, 张国颖, 毕城伟, 杨李波, 施致裕, 杨勇, 张建朋, 高婷.  CircRNA EZH2通过调控miR-30c-5p促进前列腺癌细胞增殖和迁移, 昆明医科大学学报. 2022, 43(7): 25-32. doi: 10.12259/j.issn.2095-610X.S20220731
    [10] 张玮, 王保全, 雷喜锋, 王旭, 张梁.  miR-125b-5p调控HK2抑制胆囊癌细胞增殖和糖酵解, 昆明医科大学学报. 2022, 43(12): 23-29. doi: 10.12259/j.issn.2095-610X.S20221206
    [11] 杨兰, 贾霄, 姜奕彤, 崔琪, 刘光赐, 何颖红.  UBE2C基因沉默表达对人胃癌AGS细胞增殖和迁移的影响, 昆明医科大学学报. 2021, 42(5): 18-23. doi: 10.12259/j.issn.2095-610X.S20210504
    [12] 魏东.  脆性位点基因WWOX调控人胆囊癌细胞的体外增殖效应, 昆明医科大学学报. 2016, 37(05): -.
    [13] 贾楠楠.  Gnaq对SH-SY5Y细胞增殖的作用及机制, 昆明医科大学学报. 2016, 37(01): -.
    [14] 王海峰.  上调microRNA-101沉默EZH2基因表达对人膀胱癌T24细胞系增殖和凋亡的影响, 昆明医科大学学报. 2014, 35(09): -1.
    [15] 倪滔.  改良贴壁组织块法与改良I型胶原酶消法对成骨细胞增殖效果的比较研究, 昆明医科大学学报. 2014, 35(06): -.
    [16] 刘佳鑫.  SDF-1/CXCR4在恶性胶质瘤细胞体外增殖、迁移及侵袭中的作用, 昆明医科大学学报. 2013, 34(01): -.
    [17] 夏英杰.  SD大鼠髁状突颈部骨折对大鼠髁状突软骨细胞增殖与凋亡的影响, 昆明医科大学学报. 2012, 33(05): -.
    [18] 武斌.  大豆苷元对人乳牙牙髓干细胞增殖和成骨分化的影响, 昆明医科大学学报. 2012, 33(09): -.
    [19] 低氧诱导对人肝癌SMMC7721细胞生物学行为的影响, 昆明医科大学学报. 2011, 32(05): -.
    [20] 李雄.  氧自由基在血管紧张素Ⅱ诱导ECV304细胞增殖中的作用, 昆明医科大学学报. 2007, 28(06): -.
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  246
  • HTML全文浏览量:  222
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-25
  • 网络出版日期:  2024-10-14

目录

    /

    返回文章
    返回