留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

右美托咪定的心脏保护作用机制及临床应用

朱菁菁 裴晓蕾 王会 钱金桥

朱菁菁, 裴晓蕾, 王会, 钱金桥. 右美托咪定的心脏保护作用机制及临床应用[J]. 昆明医科大学学报, 2025, 46(8): 127-135. doi: 10.12259/j.issn.2095-610X.S20250817
引用本文: 朱菁菁, 裴晓蕾, 王会, 钱金桥. 右美托咪定的心脏保护作用机制及临床应用[J]. 昆明医科大学学报, 2025, 46(8): 127-135. doi: 10.12259/j.issn.2095-610X.S20250817
Jingjing ZHU, Xiaolei PEI, Hui WANG, Jinqiao QIAN. Cardiac Protective Mechanism of Dexmedetomidine and Its Application in Clinic[J]. Journal of Kunming Medical University, 2025, 46(8): 127-135. doi: 10.12259/j.issn.2095-610X.S20250817
Citation: Jingjing ZHU, Xiaolei PEI, Hui WANG, Jinqiao QIAN. Cardiac Protective Mechanism of Dexmedetomidine and Its Application in Clinic[J]. Journal of Kunming Medical University, 2025, 46(8): 127-135. doi: 10.12259/j.issn.2095-610X.S20250817

右美托咪定的心脏保护作用机制及临床应用

doi: 10.12259/j.issn.2095-610X.S20250817
基金项目: 国家自然科学基金(82060060);昆明市卫生健康委员会卫生科研课题(2023-04-11-018)
详细信息
    作者简介:

    朱菁菁(1988~),女,云南昆明人,医学硕士,主治医师,主要从事右美托咪定心脏保护作用的临床研究工作

    通讯作者:

    钱金桥,E-mail:qianjinqiao@126.com

  • 中图分类号: R614

Cardiac Protective Mechanism of Dexmedetomidine and Its Application in Clinic

  • 摘要: 心血管疾病仍然是围术期内导致患者死亡以及影响转归的重要因素。右美托咪定是α2肾上腺素受体激动剂,具有镇痛、镇静、抗焦虑等功能。总结右美托咪定在心肌缺血/再灌注损伤中不同种类的发现,并对其结果进行了相应机制的深入探讨。意在进一步阐明心脏疾病患者右美托咪定应用的潜在护心作用。
  • 图  1  右美托咪定的铁死亡机制

    DEX:右美托咪定;AMPK:腺苷酸活化蛋白激酶;Nrf2:核因子相关因子2;Cystine:胱氨酸;Glutamate:谷氨酸;SLC7A11:溶质载体家族7成员11;Cysteine:半胱氨酸;GSH:谷胱甘肽;Gpx4:谷胱甘肽过氧化酶4;Ros:活性氧;H0-1:血红素加氧酶;TNFR1:肿瘤坏死因子受体1;PKA:蛋白激酶A;CREB:环磷腺苷效应元件结合蛋白;Lipid peroxidation:脂质过氧化;Ferroptosi:铁死亡。

    Figure  1.  The ferroptosis mechanism of dexmedetomidine

    图  2  右美托咪定的凋亡内外途径机制图

    DEX:右美托咪定;ATP:三磷酸腺苷;mPTP:线粒体通透性转换孔;ROS:活性氧;FKBp12.6/kyr2:fk506结合蛋白12.6/ryanodine受体2;Ca²+overload:钙离子超载;LncRNA:长链非编码RNA;JAK2/STAT3:蛋白质酪氨酸激酶2/信号转导与转录因子3;PI3K:磷脂酰肌醇-3激酶;AKT:蛋白激酶;Gsk-3β:糖原合成酶激酶-3β;HIF-1a:缺氧诱导因子-1a;BAX:相关X蛋白;Caspase3、Caspase9:半胱氨酸天冬氨酸蛋白酶3、9;Apoptosome:凋亡复合体;Apoptosis:凋亡。

    Figure  2.  Diagram of the internal and external pathways of apoptosis of dexmedetomidine

    图  3  右美托咪定的焦亡机制图

    注:DEX:右美托咪定;NLR:淋巴细胞比值;AIM2:干扰素诱导蛋白2;NLRP3:含结构域的蛋白3;miR:微小核糖核酸;Pyroptosis:焦亡;Nrf2:红系衍生的核因子2相关因子。

    Figure  3.  Shows the pyroptosis mechanism diagram of dexmedetomidine

  • [1] He L, Hao S, Wang Y, et al. DEXmedetomidine preconditioning attenuates ischemia/reperfusion injury in isolated rat hearts with endothelial dysfunction[J]. Biomed Pharmacother, 2019, 114(2): 108-113.
    [2] Vander H, Steenbergen C. Cardioprotection and myocardial reperfusion[J]. Pitfalls to Clinical Application, 2013, 113(4): 464-477.
    [3] J. Xiong, F S Xue, Y J Yuan, et al. Cholinergic antiinflammatory pathway. A possible approach to protect against myocardial ischemia reperfusion injury[J], Chinese Medical Journa (Engl. ) , 2010, 123 (19) : 2720–2726.
    [4] H Fliss, D Gattinger. Apoptosis in ischemic and reperfused rat myocardium[J]. Circulation Research, 1996, 79(5): 949-956.
    [5] M Zhang, K Cheng, H Chen, et al. Galectin-3 knock down inhibits cardiac ischemia-reperfusion injury through interacting with bcl-2 and modulating cell apoptosis[J]. Arch Biochem Biophys, 2020, 694(3): 108-116.
    [6] Wang Z, Yao M, Jiang L, et al. DEXmedetomidine attenuates myocardial ischemia/reperfusion-induced ferroptosis via AMPK/GSK-3β/Nrf2 axis[J]. Biomed Pharmacother, 2022, 154(10): 772-786.
    [7] Zhou Y, Yang Y, Yi L, et al. Propofol and dexmedetomidine ameliorate endotoxemia-associated encephalopathy via inhibiting ferroptosis[J]. Drug Des Devel Ther, 2024, 18(10): 1349-1368.
    [8] Cao X, Zhao L, Zhou J, et al. Dexmedetomidine inhibits ferroptosis through the Akt/GSK3β/Nrf2 axis and alleviates adriamycin-induced cardiotoxicity[J]. Life Sci, 2025, 123(15): 609-616.
    [9] Feng M, Zheng C, Li X, et al. Reversal of lipopolysaccharide-induced cardiomyocyte apoptosis via α7nAChR by DEXmedetomidine[J]. Cellular & Molecular Biology Letters, 2023, 70(1): 1135-1139.
    [10] Ma X, Xu J, Gao N, et al. DEXmedetomidine attenuates myocardial ischemia-reperfusion injury via inhibiting ferroptosis by the cAMP/PKA/CREB pathway[J]. Molecular and Cellular Probes, 2023, 68(7): 1149-1167.
    [11] Wang Z, Yang Y, Xiong W, et al. DEXmedetomidine protects H9C2 against hypoxia/reoxygenation injury through miR-208b-3p/Med13/Wnt signaling pathway axis[J]. Biomedicine & Pharmacotherapy, 2020, 125(3): 123-131.
    [12] Deng X, Ye F, Zeng L, et al. DEXmedetomidine mitigates myocardial ischemia/reperfusion-induced mitochondrial apoptosis through targeting lncRNA HCP5[J]. American Journal of Chinese Medicine, 2022, 50(6): 371-382.
    [13] Cao X, Zhao L, Zhou J, et al. Dexmedetomidine inhibits ferroptosis through the Akt/GSK3β/Nrf2 axis and alleviates adriamycin-induced cardiotoxicity[J]. Life Sci, 2025, 371(7): 609-614.
    [14] Zhao Y S, Shi Y K, Li K F, et al. Dexmedetomidine regulates macrophage phenotype remodeling through AMPK/sirt1 to alleviate inflammatory mediators and lung injury[J]. Journal of Biochemical and Molecular Toxicology, 2025, 39(1): 701-708.
    [15] Yang K, Ma Y, Xie C, et al. Dexmedetomidine combined with propofol attenuates myocardial ischemia/reperfusion injury by activating the AMPK signaling pathway[J]. Biomedicine & Pharmacotherapy, 2023, 9(11): e22054.
    [16] Yang X, Wu J, Cheng H, et al. Dexmedetomidine ameliorates acute brain injury induced by myocardial ischemia-reperfusionvia upergulating the HIF-1 pathway[J]. Shock, 2023, 60(5): 678-687.
    [17] Avci O, Taskiran A S, Gundogdu, O. Dexmedetomidine, an α2 agonist, increases the morphine analgesic effect and decreases morphine tolerance development by suppressing oxidative stress and TNF/IL-1 signalling pathway in rats[J]. Rev Esp Anestesiol Reanim (Engl Ed), 2023, 70(6): 327-340. doi: 10.1016/j.redar.2022.04.003
    [18] Yang K, Kong X, Xie C, et al. Combined administration of dexmedetomidine and propofol mitigates myocardial ischemia/reperfusion injury by modulating the Akt/mTOR/Nrf2 axis to suppress ferroptosis[J]. European Journal of Pharmacology, 2025, 997(1): 577-599.
    [19] Ning X, Tang J, Li X, et al. Dexmedetomidine ameliorates hepatic ischemia reperfusion injury via modulating SIRT3 mediated mitochondrial quality control[J]. Scientific Reports, 2025, 15(1): 5630-5638. doi: 10.1038/s41598-025-90069-1
    [20] Wang L, Liu J, Wang Z, et al. DEXmedetomidine abates myocardial ischemia reperfusion injury through inhibition of pyroptosis via regulation of miR-665/MEF2D/Nrf2 axis[J]. Biomedicine & Pharmacotherapy, 2023, 165(3): 123-136.
    [21] Wang L, Tang S, Wang Z, et al. The administration of dexmedetomidine changes microRNA expression profiling of rat hearts[J]. Biomedicine & Pharmacotherapy, 2019, 120(10): 69-82.
    [22] He L, Wang Z, Zhou R, et al. DEXmedetomidine exerts cardioprotective effect through miR-146a-3p targeting IRAK1 and TRAF6 via inhibition of the NF-κB pathway[J]. Biomedicine & Pharmacotherapy, 2021, 133(5): 371-379.
    [23] Park J H, Oh J E, Kim N, et al. DEXmedetomidine alleviates CoCl2-induced hypoxic cellular damage in INS-1 cells by regulating autophagy[J]. Korean J Anesthesiol, 2023, 77(6): 609-617.
    [24] Chen S, Wu J, Li A, et al. Effect and mechanisms of DEXmedetomidine combined with macrophage migration inhibitory factor inhibition on the expression of inflammatory factors and AMPK in mice[J]. Clinical & Experimental Immunology, 2023, 212(12): 401-418.
    [25] Xu Y, Zhang X, Tang X, et al. Dexmedetomidine post-treatment exacerbates metabolic disturbances in septic cardiomyopathy via α2A-adrenoceptor[J]. Biomedicine & Pharmacotherapy, 2023, 170(11): 1993-2004.
    [26] Yin W, Wang C, Peng Y, et al. DEXmedetomidine alleviates H2O2-induced oxidative stress and cell necroptosis through activating of α2-adrenoceptor in H9C2 cells[J]. Molecular Biology Reports, 2020, 47(1): 371-380.
    [27] He Y, Yang Z Y, Li J L, et al. Dexmedetomidine reduces theinflammation and apoptosis of doxorubicin-induced myocardial cells[J]. Experimental and Molecular Pathology, 2020, 113(4): 104-111.
    [28] Baik J, Kim O, Jeon S, et al. Impact of nonselective and selective α-1 adrenergic blockers on the sedative efficacy of dexmedetomidine in urologic surgery: A prospective, observational study[J]. Medical Science Monitor, 2023, 29(9): 416-424.
    [29] Hou Z, Yang F, Chen K, et al. hUC-MSC-EV-miR-24 enhances the protective effect of DEXmedetomidine preconditioning against myocardial ischemia-reperfusion injury through the KEAP1/Nrf2/HO-1 signaling[J]. Drug Delivery and Translational Research, 2023, 14(3): 392-401.
    [30] Geng Q, Ainiwaer Y, Zhang J, et al. DEXmedetomidine alleviates myocardial injury induced by acute kidney injury in diabetes mellitus rats via regulating the inflammatory response[J]. Annals of Clinical and Laboratory Science, 2023, 54(4): 3829-3843.
    [31] Khan U, Hammer G B, Duncan-Azadi C, et al. A randomized, double-blind, dose-controlled study of the use of dexmedetomidine alone for procedural sedation of children and adolescents undergoing MRI scans[J]. Pediatric Anesthesia, 2024, 34(5): 405-414. , doi: 10.1111/pan.14857
    [32] Zhang S, Tang J, Sun C et al. DEXmedetomidineattenu-ates hepatic ischemia-reperfusion injury-inducedapop-tosis via reducing oxidative stress and endoplasmicretic-ulum stress[J]. International Immunopharmacology, 2023, 117(8): 1757-1766.
    [33] Ding H, Liu D, He J, et al. The role of the Sirt1/Foxo3apathway in mitigating myocardial ischemia-reperfusion in-jury by dexmedetomidine[J]. Chem Biol Drug Des, 2025, 105(4): 701-710.
    [34] Yuan H, Guo J, Wang C, et al. Alleviation effects of DEXmedetomidine on myocardial ischemia/reperfusion injury through fatty acid metabolism pathway via Elovl6[J]. International Immunopharmacology, 2023, 138(2): 359-368.
    [35] Wang L, Tang S, Wang Z, et al. The administration of dexmedetomidine changes microRNA expression profiling of rat hearts[J]. Biomedicine & Pharmacotherapy, 2019, 120(11): 154-166.
    [36] Xion W, Zho R, Q Y, et al. Dexmedetomidine preconditioning mitigates myocardial ischemia/reperfusion injury via inhibition of mast cell degranulation[J]. Biomedicine & Pharmacotherapy, 2021, 141(6): 357-368.
    [37] Jiang L, Xiong W, Yang Y, et al. Insight into Cardioprotective effects and mechanisms of dexmedetomidine[J]. Journal of Cardiovascular Pharmacology and Therapeutics, 2024, 38(3): 428-441.
    [38] 黄颖, 董鸿捌, 陈云娥. 右美托咪定在重症患儿镇静镇痛的有效性和安全性分析[J]. 中国医药指南, 2024, 22(7): 5-9.
    [39] Shen J, Sun Y, Han D, et al. Effects of dexmedetomidine on perioperative cardiac adverse events in elderly patients with coronary heart disease[J]. Biomedicine & Pharmacotherapy, 2017, 42(10): 7692-7707.
    [40] 杨逸成, 陈贝儿, 叶凯雁, 等. 右美托咪定的心脏保护机制及其临床应用价值[J]. 中国医学科学院学报, 2022, 44(1): 130-135.
    [41] 黄佳佳, 郑吉建, 金立红. 右美托咪定滴鼻用于先天性心脏病患儿心脏彩色多普勒超声检查的镇静效果及成功率的影响因素分析[J]. 上海医学, 2023, 46(2): 87-91.
    [42] 段声吉. 右美托咪定预处理对异丙肾上腺素诱导的室性心律失常的影响及机制研究[D]. 南充: 川北医学院, 2023.
  • [1] 秦瑞峰, 薛佳栋, 张佳, 刘帆, 张绍辉, 尹立阳, 袁增江.  SKI通过ROS/JNK通路诱导铁死亡干预胰腺癌恶性行为, 昆明医科大学学报.
    [2] 谢欣媛, 牛晓辰, 孙建辉, 张雅涵, 陈鹏飞.  胃腺癌患者铁死亡相关LncRNA预后模型的构建, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20250407
    [3] 沈晓霞, 赵晓东, 宋永健.  SIRT1激动剂调控Nrf2-GPX4铁死亡途径改善冠状动脉病变小鼠心肌功能的作用及机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20250507
    [4] 包红梅, 秦榕, 张宇, 杨美菊, 苏纲.  PCV-VG模式联合右美托咪定对腹腔镜袖状胃切除术患者术中呼吸力学和血气指标的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240917
    [5] 热则耶·麦麦提祖农, 李秀娟, 刘玲, 李卉.  铁死亡抑制因子KIF20A对食管癌细胞生物学行为及铁死亡的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240207
    [6] 李威, 蒋立虹, 马丽晶, 陈锐, 杨童硕.  铁死亡在心肌病中的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240327
    [7] 秦榕, 苏纲, 张宇, 殷巍, 赵震.  右美托咪定联合甲磺酸多拉司琼对腹腔镜袖状胃切除术患者血浆胃动素及术后恶心呕吐的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230215
    [8] 王东, 高必波, 孙会英, 冷登辉, 冉小平, 林文.  miR-216b-5p通过靶向NCOA3促进胶质母细胞瘤细胞铁死亡, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230805
    [9] 鲁月, 邱昌明, 杨云丽, 黄治国, 李治贵, 麻伟青, 李娜.  超声引导下右美托咪定作为佐剂的罗哌卡因单次收肌管阻滞用于成人髌骨骨折术后镇痛的效果, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220613
    [10] 杨伟, 陈洪艳, 陈文栋, 王燕琼, 白向锋.  miR-208a通过调控QKI5表达对大鼠心肌缺血再灌注损伤的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220724
    [11] 冯兆森, 方育, 欧顶琴, 杨轶涵, 王志瑶, 黄洁.  右美托咪定和地塞米松作为臂丛神经阻滞添加剂的临床疗效, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20211005
    [12] 杨渊, 彭丽佳, 浦澜青, 李俊杰, 邵建林, 杨鑫.  丙泊酚复合右美托咪定或咪达唑仑在老年人无痛胃肠镜检中的应用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210221
    [13] 曹艳, 蒋鸿雁, 王艳雪, 吴抖威, 钱传云, 吴海鹰, 李坪.  右美托咪定抑制大鼠创伤性脑损伤后神经细胞凋亡, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210202
    [14] 杨麦巧, 张富荣, 刘丽丽, 刘晓颖, 刘萍.  右美托咪定防治腰硬联合麻醉下剖宫产术中寒战的临床效果, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20201125
    [15] 熊青青, 罗晓东, 付步芳, 钟家依, 和国莲.  右美托咪定对高海拔地区全麻手术患者术后呼吸的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20201224
    [16] 杨柳, 屈启才, 陈瑞, 角述兰, 思永玉, 周华.  右美托咪定对烟雾吸入性肺损伤大鼠炎症反应的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20201124
    [17] 杨玥, 陶建平.  右美托咪定的临床麻醉应用进展, 昆明医科大学学报.
    [18] 李文锋, 范晓华, 董发团, 李娜.  右美托咪定对平稳拔除气管导管时七氟烷半数有效浓度的影响, 昆明医科大学学报.
    [19] 宋仕钦.  右美托咪定对老年手术患者氧合功能及心肺功能的影响, 昆明医科大学学报.
    [20] 单可记.  右美托咪定联合氯胺酮麻醉诱导困难气道插管, 昆明医科大学学报.
  • 加载中
图(3)
计量
  • 文章访问数:  218
  • HTML全文浏览量:  128
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-02
  • 网络出版日期:  2025-08-13
  • 刊出日期:  2025-08-30

目录

    /

    返回文章
    返回