留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AKR1C3通过PD1/PD-L1信号通路对乳腺癌细胞恶性生物学行为的干预作用

宋晶晶 熊伟 姚淑辉 刘爽 张静

宋晶晶, 熊伟, 姚淑辉, 刘爽, 张静. AKR1C3通过PD1/PD-L1信号通路对乳腺癌细胞恶性生物学行为的干预作用[J]. 昆明医科大学学报.
引用本文: 宋晶晶, 熊伟, 姚淑辉, 刘爽, 张静. AKR1C3通过PD1/PD-L1信号通路对乳腺癌细胞恶性生物学行为的干预作用[J]. 昆明医科大学学报.
Jingjing SONG, Wei XIONG, Shuhui YAO, Shuang LIU, Jing ZHANG. Intervention of AKR1C3 on Malignant Biological Behavior of Breast Cancer Cells through PD1/PD-L1 Signaling Pathway[J]. Journal of Kunming Medical University.
Citation: Jingjing SONG, Wei XIONG, Shuhui YAO, Shuang LIU, Jing ZHANG. Intervention of AKR1C3 on Malignant Biological Behavior of Breast Cancer Cells through PD1/PD-L1 Signaling Pathway[J]. Journal of Kunming Medical University.

AKR1C3通过PD1/PD-L1信号通路对乳腺癌细胞恶性生物学行为的干预作用

基金项目: 唐山市人力项目 (A202110017)
详细信息
    作者简介:

    宋晶晶(1982~),女,河北唐山人,医学硕士,主治医师,主要从事肿瘤诊治工作

  • 中图分类号: R736.4

Intervention of AKR1C3 on Malignant Biological Behavior of Breast Cancer Cells through PD1/PD-L1 Signaling Pathway

  • 摘要:   目的  探索酮还原酶家族1成员C3 (aldo-keto reductase family 1 member C3,AKR1C3)对乳腺癌恶性细胞生物学行为的干预作用及对程序性细胞死亡蛋白/程序性死亡-配体1 programmed cell death protein1/programmed death-ligand1,PD-1/PD-L 通路的影响。  方法  把MCF-7人乳腺癌细胞中NC组和AKR1C3组分别转染空质粒和AKR1C3质粒。采用MTT法检测转染后24 h、48 h、72 h细胞活力。采用流式细胞技术测定各组细胞的存活率以及早期、晚期凋亡比例;通过Transwell实验对各组细胞的迁移和侵袭能力进行检测;通过Western blot检测各组细胞PD-1、PD-L1、蛋白激酶B(protein kinase b,AKT)蛋白表达水平。使用C57BL/6小鼠构建荷瘤模型,将采用人乳腺癌MCF-7细胞转染NC质粒和AKR1C3质粒进行细胞荷瘤,每3天测量瘤体积,持续21 d。  结果  相较于NC组,AKR1C3组细胞活力降低(P < 0.05),并且具有时间依赖效应(P < 0.05),迁移和侵袭能力降低(P < 0.05),早期凋亡和晚期凋亡比例升高(P < 0.05),PD-1、PD-L1、AKT蛋白表达水平降低(P < 0.05)。小鼠实验结果表明,AKR1C3组小鼠肿瘤体积降低,肿瘤质量下降(P < 0.05)。  结论  AKR1C3可以抑制人乳腺癌细胞恶性生物学行为,抑制PD-1/PD-L1信号通路蛋白表达。
  • 图  1  过表达AKR1C3转染效率验证($\bar x \pm s $,n = 3)

    与NC组相比,*P < 0.05。

    Figure  1.  Validation of AKR1C3 overexpression transfection efficiency in MCF-7 cells ($\bar x \pm s $,n = 3)

    图  2  过表达AKR1C3对MCF-7细胞凋亡的影响($\bar x \pm s $,n = 3)

    Figure  2.  Effect of AKR1C3 Overexpression on Apoptosis in MCF-7 Cells($\bar x \pm s $,n = 3)

    图  3  过表达AKR1C3对MCF-7细胞迁移和侵袭的影响($\bar x \pm s $,n = 3)

    Figure  3.  Effect of AKR1C3 Overexpression on Migration and Invasion in MCF-7 Cells ($\bar x \pm s $,n = 3)

    图  4  过表达AKR1C3对MCF-7细胞PD-1/PD-L1信号通路的影响($\bar x \pm s $,n = 3)

    与NC组相比,*P < 0.05。

    Figure  4.  Effect of AKR1C3 Overexpression on the PD-1/PD-L1 Signaling Pathway in MCF-7 Cells ($\bar x \pm s $,n = 3)

    图  5  过表达AKR1C3对肿瘤生长的影响($\bar x \pm s $,n = 3)

    A:肿瘤代表性图片;B:肿瘤体积统计图;C:肿瘤质量统计图;D:对PD-1/PD-L1蛋白的影响;与NC组相比,*P < 0.05

    Figure  5.  Effect of AKR1C3 Overexpression on Tumor Growth ($\bar x \pm s $,n = 3)

    表  1  AKR1C3引物序列信息

    Table  1.   AKR1C3 primer sequence information

    基因引物序列引物长度(bp)
    AKR1C3F 5′-CAA GCG TCC TAA TTG TGG TCA-3′
    R 5′-CCC TGC TAG ATG TCC AAC TGA TT-3′
    22
    GAPDHF 5′-AGA AGG CTG GGG CTC ATT TG-3′
    R 5′ AGG GGC CAT CCA CAG TCT TC-3′
    20
    下载: 导出CSV

    表  2  过表达AKR1C3对人乳腺癌MCF-7细胞活力的影响($\bar x \pm s $,n = 3)

    Table  2.   Effect of AKR1C3 overexpression on cell viability in MCF-7 cells ($\bar x \pm s $,n = 3)

    组别 24 h 48 h 72 h 组内时间比较
    对照组 98.65 ± 0.71 97.81 ± 0.88 96.46 ± 0.61 F=1.32,P=0.312
    NC组 97.92 ± 0.91 95.61 ± 1.71 95.98 ± 1.02 F=2.15,P=0.152
    AKR1C3组 77.12 ± 1.41* 70.61 ± 1.73*# 61.21 ± 1.52*# F=86.34,P < 0.001
    P <0.001 <0.001 <0.001
      与NC组比较,*P < 0.05;与24 h相比,#P < 0.05。
    下载: 导出CSV

    表  3  过表达AKR1C3对人乳腺癌MCF-7细胞凋亡的影响($\bar x \pm s $,n = 3)

    Table  3.   Effect of AKR1C3 Overexpression on Apoptosis in Human Breast Cancer MCF-7 Cells ($\bar x \pm s $,n = 3)

    组别细胞存活(%)早期凋亡(%)晚期凋亡(%)
    对照组94.51 ± 0.913.21 ± 0.181.06 ± 0.05
    NC组NC93.21 ± 0.983.16 ± 0.471.28 ± 0.52
    AKR1C3组61.71 ± 5.73*13.21 ± 0.41*25.21 ± 1.02*
    F89.675715.4901320.242
    P<0.001<0.001<0.001
      与NC组比较,*P < 0.05。
    下载: 导出CSV

    表  4  过表达AKR1C3对人乳腺癌MCF-7细胞迁移和侵袭的影响($\bar x \pm s $,n = 3)

    Table  4.   Effect of AKR1C3 Overexpression on Migration and Invasion in Human Breast Cancer MCF-7 Cells ($\bar x \pm s $,n = 3)

    组别 细胞迁移数(个) 细胞侵袭数(个)
    对照组 297.51 ± 15.41 310.21 ± 20.11
    NC组NC 293.91 ± 26.98 313.11 ± 23.47
    AKR1C3组 161.11 ± 15.23* 131.27 ± 26.41*
    F 45.418 59.078
    P <0.001 <0.001
      与NC组比较,*P < 0.05。
    下载: 导出CSV

    表  5  过表达AKR1C3对人乳腺癌MCF-7细胞PD-1/PD-L1信号通路的影响($\bar x \pm s $,n = 3)

    Table  5.   Effect of AKR1C3 Overexpression on the PD-1/PD-L1 Signaling Pathway in Human Breast Cancer MCF-7 Cells ($\bar x \pm s $,n = 3)

    组别 PD-1 PD-L1 AKT
    对照组 1.21 ± 0.15 1.50 ± 0.43 1.50 ± 0.11
    NC组 1.22 ± 0.34 1.56 ± 0.32 1.59 ± 0.30
    AKR1C3组 0.81 ± 0.12* 0.65 ± 0.09* 0.79 ± 0.21*
    F 8.828 7.892 11.821
    P 0.015 0.021 0.008
      与NC组比较,*P < 0.05。
    下载: 导出CSV

    表  6  过表达AKR1C3对肿瘤生长的影响($\bar x \pm s $,n = 3)

    Table  6.   Effect of AKR1C3 Overexpression on Tumor Growth ($\bar x \pm s $,n = 3)

    组别 肿瘤体积(cm3 肿瘤质量(g) PD-1 PD-L1 AKT
    NC组 1.22 ± 0.34 2.36 ± 0.32 2.21 ± 0.22 1.56 ± 0.33 2.51 ± 0.34
    AKR1C3组 1.01 ± 0.12* 1.15 ± 0.09* 1.21 ± 0.18* 0.78 ± 0.25* 1.11 ± 0.34*
    t 6.781 7.892 15.88 16.78 19.21
    P 0.0078 0.0088 <0.001 <0.001 <0.001
      与NC组比较,*P < 0.05。
    下载: 导出CSV
  • [1] 张作伟, 吴玉戈, 李贵轩. 乳腺癌组织及细胞系中CCDC34的表达及其生物学功能[J]. 解剖科学进展, 2022, 28(1): 35-38.
    [2] De Rose F, Meduri B, De Santis M C, et al. Rethinking breast cancer follow-up based on individual risk and recurrence management[J]. Cancer Treatment Reviews, 2022, 109: 102434. doi: 10.1016/j.ctrv.2022.102434
    [3] Zhang M, Bai X, Zeng X, et al. circRNA-miRNA-mRNA in breast cancer[J]. Clinica Chimica Acta, 2021, 523: 120-130. doi: 10.1016/j.cca.2021.09.013
    [4] Rios A C, van Rheenen J, Scheele C L G J. Multidimensional Imaging of Breast Cancer[J]. Cold Spring Harbor Perspectives in Medicine, 2023, 13(5): a041330. doi: 10.1101/cshperspect.a041330
    [5] Jokar N, Velikyan I, Ahmadzadehfar H, et al. Theranostic approach in breast cancer: A treasured tailor for future oncology[J]. Clinical Nuclear Medicine, 2021, 46(8): e410-e420. doi: 10.1097/RLU.0000000000003678
    [6] 叶思婷. AKR1C3免疫组化表达与肿瘤相关性的Meta分析[D]. 福州: 福建医科大学, 2020.
    [7] Penning T M, Burczynski M E, Jez J M, et al. Human 3alpha-hydroxysteroid dehydrogenase isoforms (AKR1C1-AKR1C4) of the aldo-keto reductase superfamily: Functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones [J]. Biochemical Journal, 2021, 351(Pt 1): 67-77.
    [8] Zhang Z, Qiu X, Yan Y, et al. Evaluation of ferroptosis-related gene akr1c1 as a novel biomarker associated with the immune microenvironment and prognosis in breast cancer[J]. International Journal of General Medicine, 2021, 14: 6189-6200. doi: 10.2147/IJGM.S329031
    [9] Lee D G, Schuetz J M, Lai A S, et al. Interactions between exposure to polycyclic aromatic hydrocarbons and xenobiotic metabolism genes, and risk of breast cancer[J]. Breast Cancer, 2022, 29(1): 38-49. doi: 10.1007/s12282-021-01279-0
    [10] Vranic S, Cyprian F S, Gatalica Z, et al. PD-L1 status in breast cancer: Current view and perspectives[J]. Seminars in Cancer Biology, 2021, 72: 146-154. doi: 10.1016/j.semcancer.2019.12.003
    [11] Wu M, Huang Q, Xie Y, et al. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation[J]. Journal of Hematology & Oncology, 2022, 15(1): 24.
    [12] Hu X, Wang J, Chu M, et al. Emerging role of ubiquitination in the regulation of pd-1/pd-l1 in cancer immunotherapy[J]. Molecular Therapy, 2021, 29(3): 908-919. doi: 10.1016/j.ymthe.2020.12.032
    [13] 麻艺群, 汤諹. PI3K/AKT信号通路及AKR1C3在人瘢痕疙瘩形成中的作用机制研究[J]. 中华整形外科杂志, 2022, 38(1): 83-92.
    [14] 魏瑜, 李志芳, 曹雷雨, 等. 敲减辅酶Q10B表达对裸鼠食管鳞癌皮下移植瘤细胞增殖、凋亡及上皮间质转化的影响[J]. 山东医药, 2024, 64(28): 40-43.
    [15] Wang S, Xiong Y, Zhang Q, et al. Clinical significance and immunogenomic landscape analyses of the immune cell signature based prognostic model for patients with breast cancer[J]. Briefings in Bioinformatics, 2021, 22(4): bbaa311. doi: 10.1093/bib/bbaa311
    [16] Zhang Y N, Xia K R, Li C Y, et al. Review of breast cancer pathologigcal image processing[J]. BioMed Research International, 2021, 2021: 1994764. doi: 10.1155/2021/1994764
    [17] Liang Y, Zhang H, Song X, et al. Metastatic heterogeneity of breast cancer: molecular mechanism and potential therapeutic targets[J]. Seminars in Cancer Biology, 2020, 60: 14-27. doi: 10.1016/j.semcancer.2019.08.012
    [18] Meng F, Li WF, Jung D, et al. A novel selective AKR1C3-activated prodrug AST-3424/OBI-3424 exhibits broad anti-tumor activity[J]. American Journal of Cancer Research, 2021, 11(7): 3645-3659.
    [19] Liu H, Gao L, Xie T, et al. Identification and validation of a prognostic signature for prostate cancer based on ferroptosis-related genes[J]. Frontiers in Oncology, 2021, 11: 623313. doi: 10.3389/fonc.2021.623313
    [20] Toscan C E, McCalmont H, Ashoorzadeh A, et al. The third generation AKR1C3-activated prodrug, ACHM-025, eradicates disease in preclinical models of aggressive T-cell acute lymphoblastic leukemia[J]. Blood Cancer Journal, 2024, 14(1): 192. doi: 10.1038/s41408-024-01180-x
    [21] Zhou Q, Tian W, Jiang Z, et al. A positive feedback loop of AKR1C3-mediated activation of NF-κB and STAT3 facilitates proliferation and metastasis in hepatocellular carcinoma[J]. Cancer Research, 2021, 81(5): 1361-1374. doi: 10.1158/0008-5472.CAN-20-2480
    [22] Lee O, Fought A J, Shidfar A, et al. Association of genetic polymorphisms with local steroid metabolism in human benign breasts[J]. Steroids, 2022, 177: 108937. doi: 10.1016/j.steroids.2021.108937
    [23] Vogeley C, Sondermann N C, Woeste S, et al. Unraveling the differential impact of PAHs and dioxin-like compounds on AKR1C3 reveals the EGFR extracellular domain as a critical determinant of the AHR response[J]. Environment International, 2022, 158: 106989. doi: 10.1016/j.envint.2021.106989
    [24] Verma K, Gupta N, Zang T, et al. AKR1C3 inhibitor kv-37 exhibits antineoplastic effects and potentiates enzalutamide in combination therapy in prostate adenocarcinoma cells[J]. Molecular Cancer Therapeutics, 2021, 17(9): 1833-1845.
    [25] 朱鹏飞. AKR1C3促进肝癌细胞增殖、侵袭和转移的机制研究[D]. 郑州: 郑州大学, 2022.
    [26] Voabil P, de Bruijn M, Roelofsen L M, et al. An ex vivo tumor fragment platform to dissect response to PD-1 blockade in cancer[J]. Nature Medicine, 2021, 27(7): 1250-1261. doi: 10.1038/s41591-021-01398-3
    [27] Munari E, Mariotti F R, Quatrini L, et al. PD-1/PD-L1 in cancer: pathophysiological, diagnostic and therapeutic aspects[J]. International Journal of Molecular Sciences, 2021, 22(10): 5123. doi: 10.3390/ijms22105123
    [28] Sugiura D, Okazaki I M, Maeda T K, et al. PD-1 agonism by anti-CD80 inhibits T cell activation and alleviates autoimmunity[J]. Nature Immunology, 2022, 23(3): 399-410. doi: 10.1038/s41590-021-01125-7
    [29] Helou D G, Quach C, Fung M, et al. Human PD-1 agonist treatment alleviates neutrophilic asthma by reprogramming T cells[J]. Journal of Allergy and Clinical Immunology, 2023, 151(2): 526-538. e8.
    [30] Ge Z, Zhou G, Campos Carrascosa L, et al. TIGIT and PD1 co-blockade restores ex vivo functions of human tumor-infiltrating cd8+ t cells in hepatocellular carcinoma[J]. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12(2): 443-464. doi: 10.1016/j.jcmgh.2021.03.003
    [31] Ledys F, Kalfeist L, Galland L, et al. Therapeutic associations comprising anti-PD-1/PD-L1 in breast cancer: clinical challenges and perspectives[J]. Cancers, 2021, 13(23): 5999. doi: 10.3390/cancers13235999
    [32] Bassez A, Vos H, Van Dyck L, et al. A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer[J]. Nature Medicine, 2021, 27(5): 820-832. doi: 10.1038/s41591-021-01323-8
    [33] Jin M, Fang J, Peng J, et al. PD-1/PD-L1 immune checkpoint blockade in breast cancer: research insights and sensitization strategies[J]. Molecular Cancer, 2024, 23(1): 266. doi: 10.1186/s12943-024-02176-8
    [34] Song Y, Bugada L, Li R, et al. Albumin nanoparticle containing a PI3Kγ inhibitor and paclitaxel in combination with α-PD1 induces tumor remission of breast cancer in mice[J]. Science Translational Medicine, 2022, 14(643): eabl3649. doi: 10.1126/scitranslmed.abl3649
    [35] Hammerl D, Martens J W M, Timmermans M, et al. Spatial immunophenotypes predict response to anti-PD1 treatment and capture distinct paths of T cell evasion in triple negative breast cancer[J]. Nature Communications, 2021, 12(1): 5668. doi: 10.1038/s41467-021-25962-0
  • [1] 严怡然, 沈成万, 尚香玉, 冯婵, 李金秋, 阿仙姑·哈斯木.  高良姜素通过影响Hippo/YAP通路抑制宫颈癌Hela细胞迁移和侵袭, 昆明医科大学学报. 2025, 46(1): 36-42. doi: 10.12259/j.issn.2095-610X.S20250105
    [2] 李妍平, 董小林, 李青芸, 李红梅, 魏欢, 曾毅.  miR-21-5p通过抑制STAT3缓解OGD诱导的HT22细胞炎症和凋亡并促进增殖, 昆明医科大学学报. 2024, 45(12): 1-7.
    [3] 刘卓慧, 覃诗茵, 赵鹤翔, 贾峰峰, 阮标, 龙瑞清.  藏红花素通过IRF7/NF-κB信号通路对垂体腺瘤的抑制作用, 昆明医科大学学报. 2024, 45(12): 19-27. doi: 10.12259/j.issn.2095-610X.S20241203
    [4] 秦祥川, 李金秋, 黄晓婧, 忽吐比丁·库尔班, 阿仙姑·哈斯木.  HPV E6通过Rap1信号通路影响宫颈癌细胞增殖、侵袭及迁移的研究, 昆明医科大学学报. 2024, 45(9): 9-16. doi: 10.12259/j.issn.2095-610X.S20240902
    [5] 刘巍敏, 麻艺群, 田卓, 湯諹.  PI3K/Akt信号通路在增生性瘢痕中的调控作用, 昆明医科大学学报. 2023, 44(3): 22-27. doi: 10.12259/j.issn.2095-610X.S20230313
    [6] 胡滔, 吴怡, 耿文达, 章意坚, 贺瑄, 李珊珊, 习杨彦彬, 邓丽玲.  自主运动训练通过调节Caspase-3的活性抑制人BRCA1突变乳腺癌的增殖与生长, 昆明医科大学学报. 2023, 44(4): 31-39. doi: 10.12259/j.issn.2095-610X.S20230419
    [7] 张梁, 王保全, 雷喜锋, 王旭, 柯阳, 张玮.  miR-29c-3p/IGF1分子轴对肝星状细胞活化,增殖和凋亡的作用机制, 昆明医科大学学报. 2023, 44(9): 7-14. doi: 10.12259/j.issn.2095-610X.S20230926
    [8] 蔡冰, 张伟, 刘静, 刘屹.  miR-218-5p通过调控LAYN抑制结肠癌发展的机制, 昆明医科大学学报. 2023, 44(12): 32-40. doi: 10.12259/j.issn.2095-610X.S20231206
    [9] 徐冬杏, 唐波, 朱国, 雷学芬, 王秋虹, 魏东.  Twist1调控Bmi1对胆囊癌细胞侵袭迁移的影响及其机制研究, 昆明医科大学学报. 2023, 44(3): 28-33. doi: 10.12259/j.issn.2095-610X.S20230320
    [10] 廖周俊, 杨少华, 刘立鑫, 胡晟, 陈轶晖, 康强, 张小文.  AK4对肝内胆管癌细胞HUCCT1增殖、迁移的影响, 昆明医科大学学报. 2022, 43(6): 1-6. doi: 10.12259/j.issn.2095-610X.S20220611
    [11] 赵斌, 段元鹏, 张国颖, 毕城伟, 杨李波, 施致裕, 杨勇, 张建朋, 高婷.  CircRNA EZH2通过调控miR-30c-5p促进前列腺癌细胞增殖和迁移, 昆明医科大学学报. 2022, 43(7): 25-32. doi: 10.12259/j.issn.2095-610X.S20220731
    [12] 杨兰, 贾霄, 姜奕彤, 崔琪, 刘光赐, 何颖红.  UBE2C基因沉默表达对人胃癌AGS细胞增殖和迁移的影响, 昆明医科大学学报. 2021, 42(5): 18-23. doi: 10.12259/j.issn.2095-610X.S20210504
    [13] 孙健玮, 向茜, 刘子超, 徐珊珊, 丁丁.  PTEN基因表达对甲状腺癌BCPAP和FTC133细胞凋亡以及ERK和AKT表达的影响, 昆明医科大学学报. 2021, 42(8): 23-30. doi: 10.12259/j.issn.2095-610X.S20210805
    [14] 徐爱萍, 林华, 高丽辉, 李玲, 陈梦威, 王歌, 杨娟, 牛艳芬.  芒果苷元对TGF-β1诱导的HK-2细胞EMT的影响, 昆明医科大学学报. 2021, 42(7): 1-6. doi: 10.12259/j.issn.2095-610X.S20210701
    [15] 李珊珊, 全宇航, 龚玲俐, 杨会, 浦劲宏, 王忠慧.  七氟烷对人骨肉瘤Saos2细胞增殖、侵袭、迁移及凋亡的影响, 昆明医科大学学报. 2020, 41(05): 103-107.
    [16] 梁乃超.  基质金属蛋白酶MMP-9、TIMP-1及VEGF的表达情况与非小细胞肺癌组织侵袭的相关性, 昆明医科大学学报. 2016, 37(10): -.
    [17] 刘立鑫.  二甲双胍对肝癌细胞HCCLM3生物学行为的影响, 昆明医科大学学报. 2015, 36(05): -.
    [18] 史兆坤.  单核细胞趋化蛋白-1趋化巨噬细胞迁移与侵袭的体外实验研究, 昆明医科大学学报. 2014, 35(04): -.
    [19] 刘佳鑫.  SDF-1/CXCR4在恶性胶质瘤细胞体外增殖、迁移及侵袭中的作用, 昆明医科大学学报. 2013, 34(01): -.
    [20] 低氧诱导对人肝癌SMMC7721细胞生物学行为的影响, 昆明医科大学学报. 2011, 32(05): -.
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  9
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-23

目录

    /

    返回文章
    返回