Research Progress on the Mechanisms of Action of Artemisinin and Its Derivatives in Cancer Therapy
-
摘要: 青蒿素及其衍生物由于其独特的过氧化桥结构,不仅对恶性疟疾显示出显著的疗效,也展现了强大的抗肿瘤能力。这些化合物通过多效机制干扰癌细胞生长,包括抑制细胞增殖、引起细胞周期阻滞、诱导多种细胞死亡模式、调节肿瘤微环境和调节肿瘤代谢等。临床试验已证实青蒿素类化合物具有显著的抗癌活性。本文归纳了近年来关于青蒿素及其衍生物作为潜在抗癌药物的最新进展和发现,为未来青蒿素类化合物的抗癌机制研究提供参考。Abstract: Due to their unique peroxide bridge structure, Artemisinin and its derivatives have demonstrated the remarkable efficacy in treating severe malaria and exhibited the potent anticancer properties. These compounds interfere with the cancer cell growth through the multiple mechanisms, including the inhibition of cell proliferation, induction of various forms of cell death, cell cycle arrest, suppression of angiogenesis, and modulation of the tumor microenvironment. Clinical trials have confirmed the significant anticancer activity of artemisinin-based compounds. This paper summarizes the recent advances and findings on artemisinin and its derivatives as the potential anticancer agents, providing valuable insights for future researches on the anticancer mechanisms of these compounds.
-
Key words:
- Artemisinin /
- Artemisinin derivatives /
- Anticancer /
- Mechanisms of action
-
癌症是全球第二大致死病因,对人类健康构成严重威胁[1]。目前的癌症治疗方法包括手术、放疗、化疗和免疫疗法等,但对于脑和肝转移的晚期患者,这些治疗手段的效果依然有限。因此,开发新的有效治疗方法是抗癌研究的关键[2]。天然产物,尤其是具有传统药用价值的化合物,激发了新的抗肿瘤药物的研发。目前超过一半的抗癌药物来源于天然产物或其衍生物。深入研究天然产物中的潜在抗癌成分,对促进癌症治疗的发展具有重要意义[3]。青蒿素是一种含有过氧化物基团的倍半萜内酯化合物,由屠呦呦团队从青蒿(甜艾草)叶中分离得到,其衍生物包括双氢青蒿素、蒿甲醚、青蒿琥酯和蒿乙醚等。这些化合物不仅在抗疟疾方面表现出卓越效果,而且在抗癌领域显示出潜力[4]。尤其是在治疗疟疾中青蒿素表现出的高效低毒的药效,其在抗癌领域的应用前景尤为值得进一步探索[5]。在青蒿素及其衍生物治疗宫颈癌的临床研究中,青蒿琥酯显示了良好的疗效和耐受性[6]。一项对晚期转移性宫颈癌患者的临床研究中发现,口服青蒿素显著缓解了相关症状和体征[7]。青蒿素及其衍生物在对抗不同类型的癌症时显示了独特的作用机制。双氢青蒿素在乳腺癌中通过抑制细胞增殖和血管生成显示出抗癌活性[8-9]。在肺癌治疗中,通过诱导铁死亡和细胞凋亡,抑制有氧糖酵解,以及调节免疫反应,从而阻止肺癌的进展[10−12]。由于青蒿素及其衍生物抗癌作用的复杂性,本文对其在癌症治疗中的分子机制进行综述。
1. 抑制肿瘤细胞增殖
在正常细胞中,细胞的生长和分裂由细胞周期蛋白依赖性激酶(cell cycle-dependent kinase,CDK)与细胞周期蛋白依赖性激酶抑制剂(cyclin-dependent kinase inhibitor,CKI)之间的相互作用所调控[13]。然而,由于生长信号的放大、检查点功能失调以及细胞突变,肿瘤细胞表现出强大的增殖能力[14-15]。青蒿素及其衍生物能通过抑制肿瘤细胞中关键催化酶蛋白的活性来抑制其增殖。具体而言,青蒿素和青蒿琥酯通过靶向抑制CDK4,发挥抗增殖作用[16]。此外,青蒿素还能通过抑制肝癌细胞(HepG2和Hep3B)中FoxM1的活性,产生抗癌效果[17]。双氢青蒿通过减少金属基质蛋白酶9(matrix metalloproteinase-9,MMP-9)的表达,抑制胃癌细胞的增殖[18]。双氢青蒿素还通过调节TGF-β1/Smad信号通路和CIZ1(CDK2-interacting zinc finger protein 1)的表达,抑制乳腺癌的进展[19];并通过P13k/Akt信号通路抑制纤连蛋白-1和整合素-β1的表达,来抑制结直肠癌细胞的增殖[20]。蒿甲醚通过靶向细胞色素P450(cytochrome P450 2J2,CYP2J2)抑制肝癌细胞(Hep3B2.1-7)的增殖[21]。
2. 细胞周期阻滞
不受控制的增殖是癌细胞的主要特征之一,也是其迅速增殖的重要原因。靶向癌细胞细胞周期的阻断是抑制肿瘤生长的有效手段。青蒿素及其衍生物能够通过影响细胞周期的不同阶段发挥抗癌作用[22]。首先,青蒿素衍生物能通过调节细胞周期相关酶的活性和表达来阻止肿瘤细胞在G0/G1期的进程[23];此外,还可通过降低CDK启动子的活性或增加CDK抑制剂的活性,从而发挥抗癌效果[16]。双氢青蒿素通过诱导ROS介导的自噬作用导致TRF2的降解诱发DNA损伤,引起人食管癌细胞(Eca109)在G2/M期的细胞周期停滞[24]。青蒿琥酯则能通过上调自噬相关蛋白Beclin-1的表达来诱导G2/M期的细胞周期停滞[25]。此外,青蒿琥酯引起的活性氧依赖的DNA损伤已被报道可阻断卵巢癌细胞在G2/M期的细胞周期进程[26]。青蒿素还被发现可下调CDK4和CyclinD1的表达,并抑制ERK1/2信号通路,从而导致G1期的细胞周期阻滞[27]。
3. 细胞死亡
抵抗细胞死亡是癌症的主要特征之一,促进细胞死亡则是治疗癌症的关键策略。近年来,青蒿素及其衍生物因能够引发细胞死亡,特别是通过诱导细胞凋亡、自噬和铁依赖性细胞死亡(铁死亡)而在抗癌研究领域受到日益增长的关注[28]。
3.1 细胞凋亡
细胞凋亡是程序性细胞死亡的一种重要方式,通常被认为是通过由线粒体途径介导的半胱天冬酶(Caspase)依赖性的一种细胞死亡形式。细胞凋亡的不足可能导致癌细胞的无限制增殖,因此,在癌症治疗中诱导细胞凋亡具有重要意义[29]。1996年[30]首次报告了青蒿素在体外促进了白血病细胞凋亡。随后的研究[31]显示,青蒿素及其衍生物能通过激活细胞内外因子促使多种癌症细胞发生凋亡。青蒿素通过增加肿瘤细胞内活性氧(ROS)的生成,诱发线粒体膜定性氧化、通透性降低和膜电位的变化,从而诱导细胞凋亡[32]。此外,青蒿素还能通过激活p53信号通路来促进细胞凋亡[33]。人热休克蛋白70(heat shock protein 70,HSP70)被发现可以抑制由外源和内源途径引起的细胞凋亡,Pirali等[34]研究者观察到青蒿琥酯能显著减少乳腺癌细胞(MCF-7和4T1)中HSP70和抗凋亡蛋白Bcl-2的表达,并诱导Caspase依赖性细胞凋亡。在转移性黑色素瘤的研究[35]中,双氢青蒿素通过诱导NOXA依赖性细胞凋亡,抑制黑色素瘤的进展。
3.2 自噬
自噬也被称为Ⅱ型程序性细胞死亡,是指细胞内细胞器和部分细胞质的降解和再循环的过程。自噬是一把双刃剑,因为它既与细胞的生长发展相关,也与细胞的死亡有关[28]。Chatterjee等[36]学者研究了青蒿素在非造血系统肿瘤中的作用,发现青蒿素可以通过降低自噬标记物Beclin-1和LC3α/β的表达,以剂量依赖的方式抑制自噬,进而在4T1荷瘤小鼠模型中表现出抗乳腺癌的效果。Huang等[37]研究者发现,青蒿琥酯通过上调IRE1α通路,激活内质网应激和未折叠蛋白反应,从而促进人结肠癌细胞(SW480和HCT116)的自噬。此外,青蒿琥酯还可以通过激活AMP激活蛋白激酶(AMP-activated protein kinase,AMPK)来诱导膀胱癌细胞中的自噬依赖性细胞凋亡[38]。Chen等[39]研究者发现,双氢青蒿素可以通过抑制人鳞状细胞癌(TE-1和Eca109)中的Akt/TOR信号通路来激活自噬。综上所述,青蒿素及其衍生物对不同类型肿瘤中的自噬作用表现不一,这可能因为自噬在肿瘤发展中的双重作用导致(既可支持也可抑制肿瘤)。因此,在考虑使用青蒿素及其衍生物作为抑制肿瘤进展的自噬途径时应谨慎。
3.3 铁死亡
铁死亡是一种铁依赖性的程序性细胞死亡方式,其特征是一种不依赖Caspase的程序性细胞死亡。此过程由细胞内二价铁离子的积累和稳态的变化,从而诱发细胞死亡[40]。癌细胞通常含有较多的铁元素,转铁蛋白受体的增加通常与肿瘤患者不良预后相关[41]。这表明铁死亡可以选择性地消除癌细胞,同时保护正常组织。Yuan等[42]研究者发现双氢青蒿素能通过调节PRIM2/SLC7A11通路来诱导肺癌细胞铁死亡。此外,双氢青蒿素还能通过激活UPR和上调CHAC1来诱导肝癌细胞的铁死亡[43]。因此,铁死亡成为了一种有吸引力的细胞死亡诱导方式,尤其适用于对细胞凋亡有抵抗性的癌症和对常规化疗有耐药性的癌症。青蒿琥酯通过诱导耐顺铂的膀胱癌细胞和头颈鳞状细胞癌的铁死亡,展示了其作为铁死亡诱导剂的潜力[44]。青蒿素及其衍生物能够抑制SREBP2的核定位并下调IPP和GPX4,从而触发骨髓瘤细胞的铁死亡,显示了青蒿素及其衍生物在针对肿瘤治疗中的新潜力[45]。
4. 调控肿瘤微环境
肿瘤微环境是指肿瘤内的非癌细胞及其它组成成分,以及它们产生和释放的物质。肿瘤细胞与其微环境的持续相互作用,在肿瘤的发生、发展、转移和对治疗的响应中扮演关键角色[46]。因此,肿瘤微环境是癌症治疗的一个重要靶点,具有重要的研究和临床价值。研究指出,肿瘤相关巨噬细胞(tumor-associated macrophages,TAM)在促进肿瘤生长和转移中具有多种功能[47]。Yu等[48]研究者发现,双氢青蒿素能够通过减少黑色素瘤中的IL-10和IL-6表达,抑制肿瘤微环境中调节性T细胞(regulatory T cells,Treg)的极化和浸润。此外,双氢青蒿素还能通过降低Treg的数量,增加细胞毒性T细胞(CD8+)的浸润,从而促进抗肿瘤免疫[49]。还有研究显示,青蒿琥酯可抑制人类原代单核细胞中的JAK2/STAT3信号通路,减少M2型巨噬细胞的数量,并使单核细胞极化为抗癌表型,进而诱导白血病细胞的凋亡[50]。青蒿素及其衍生物通过增强肿瘤抑制性的CTL和Th1(CD4+/IFN-γ+)细胞数量,同时减少支持肿瘤的Treg(FOXP3+)和MDSC(T-bet+)细胞数量,重塑乳腺癌微环境[51]。作为肿瘤发生发展的“土壤”,青蒿素及其衍生物通过调节微环境,显示出在肿瘤靶向治疗和免疫治疗中的巨大潜力。
5. 调节肿瘤代谢
正如Warburg效应所描述的,大多数癌细胞通过厌氧糖酵解而非正常细胞的柠檬酸循环来产生能量。这种活跃的糖酵解过程有助于恶性肿瘤的生长和存活,同时增强癌细胞的侵袭能力[52]。研究显示,青蒿素及其衍生物能够通过影响癌细胞的糖代谢来发挥抗癌作用,特别是通过抑制糖酵解途径[53]。Wang等[54]研究者发现青蒿素能通过抑制关键糖酵解酶,如缺氧诱导因子1(hypoxia-inducible factor 1,HIF-1)和丙酮酸激酶M2(pyruvate kinase M2,PKM2),来抑制人食管癌细胞(KYSE-150和KYSE-170)的糖酵解。Zhang等[11]学者则观察到青蒿琥酯和双氢青蒿素可以通过调节ERK/c-Myc通路来影响非小细胞肺癌(NCI-H358、NCI-H1975和PC9)的糖酵解。此外,双氢青蒿素还可通过YAP1/SLC2A1途径抑制肝癌细胞的Warburg效应[55]。另一项研究[56]表明,双氢青蒿素通过调节Loxl2/VEGFA表达和脂质代谢途径,增强血管内皮生长因子受体酪氨酸激酶抑制剂(VEGFR-TKIs)对骨肉瘤的抑制作用。总的来看,肿瘤细胞的代谢机制与正常细胞明显不同,青蒿素及其衍生物通过特定靶点干扰肿瘤的代谢路径,不仅展现了抗瘤效果,也减少了对正常细胞的伤害,从而降低化疗药物的副作用。
6. 小结
肿瘤是对人类健康构成严重威胁的主要疾病,一直是医学研究的重点领域。青蒿素及其衍生物,作为治疗恶性疟疾的首选药物,不仅副作用低,还显示出对多种肿瘤类型的潜在治疗效果。然而,将其作为临床抗肿瘤药物的使用仍存在一定的局限性。未来研究中,以下几个方向可能成为青蒿素及其衍生物抗肿瘤研究的重点:(1)更明确地阐述青蒿素及其衍生物对癌细胞的选择性杀伤机制,并进一步研究其对正常细胞的毒理作用;(2)目前的研究主要集中在少数几种衍生物上,开发新的衍生物以提高治疗效果和生物利用率是未来研究的重要方向;(3)青蒿素及其衍生物在调节肿瘤微环境和抗血管生成方面显示出潜力,但相关的分子机制尚未完全明确。因此,建立合理的药物筛选平台并全面、系统地揭示其抗癌机制,将为开发具有临床价值的新型抗癌药物提供重要的研究基础。
-
-
[1] Ma L,Zhang M,Zhao R,et al. Plant natural products: promising resources for cancer chemoprevention[J]. Molecules (Basel,Switzerland),2021,26(4):933-955. [2] Sonkin D,Thomas A,Teicher B A. Cancer treatments: Past,present,and future[J]. Cancer Genetics,2024,286-287(5):18-24. [3] Guo M,Jin J,Zhao D,et al. Research advances on anti-cancer natural products[J]. Frontiers in Oncology,2022,12(5):866154-866170. [4] Marchesi E,Perrone D,Navacchia M L. Molecular hybridization as a strategy for developing artemisinin-derived anticancer candidates[J]. Pharmaceutics,2023,15(9):2185-2224. [5] Zeng Z W,Chen D,Chen L,et al. A comprehensive overview of Artemisinin and its derivatives as anticancer agents[J]. European Journal of Medicinal Chemistry,2023,247(4):115000-115030. [6] Trimble C L,Levinson K,Maldonado L,et al. A first-in-human proof-of-concept trial of intravaginal artesunate to treat cervical intraepithelial neoplasia 2/3 (CIN2/3)[J]. Gynecologic Oncology,2020,157(1):188-194. [7] Ferrall L,Lin K Y,Roden R B S,et al. Cervical cancer immunotherapy: Facts and hopes[J]. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research,2021,27(18):4953-4973. [8] Dong J,Chen Y,Yang W,et al. Antitumor and anti-angiogenic effects of artemisinin on breast tumor xenografts in nude mice[J]. Research in Veterinary Science,2020,129(2):66-69. [9] Li Y,Zhou X,Liu J,et al. Dihydroartemisinin inhibits the tumorigenesis and metastasis of breast cancer via downregulating CIZ1 expression associated with TGF-β1 signaling[J]. Life Sciences,2020,248(9):117454-117463. [10] Zhang Q,Yi H,Yao H,et al. Artemisinin derivatives inhibit non-small cell lung cancer cells through induction of ROS-dependent apoptosis/ferroptosis[J]. Journal of Cancer,2021,12(13):4075-4085. [11] Zhang Y,Wang Y,Li Y,et al. Dihydroartemisinin and artesunate inhibit aerobic glycolysis via suppressing c-myc signaling in non-small cell lung cancer[J]. Biochemical Pharmacology,2022,198(4):114941-114949. [12] Xiao X,Li Y,Wang Y,et al. Dihydroartemisinin inhibits Lewis Lung carcinoma progression by inducing macrophages M1 polarization via AKT/mTOR pathway[J]. International Immunopharmacology,2022,103(2):108427-108429. [13] Jia J,Qin Y,Zhang L,et al. Artemisinin inhibits gallbladder cancer cell lines through triggering cell cycle arrest and apoptosis[J]. Molecular Medicine Reports,2016,13(5):4461-4468. [14] Kandoth C,McLellan M D,Vandin F,et al. Mutational landscape and significance across 12 major cancer types[J]. Nature,2013,502(7471):333-339. [15] Zielińska K A,Katanaev V L. Information theory: New look at oncogenic signaling pathways[J]. Trends in Cell Biology,2019,29(11):862-875. [16] Tin A S,Sundar S N,Tran K Q,et al. Antiproliferative effects of artemisinin on human breast cancer cells requires the downregulated expression of the E2F1 transcription factor and loss of E2F1-target cell cycle genes[J]. Anti-Cancer Drugs,2012,23(4):370-379. [17] Nandi D,Cheema P S,Singal A,et al. Artemisinin mediates its tumor-suppressive activity in hepatocellular carcinoma through targeted inhibition of FoxM1[J]. Frontiers in Oncology,2021,11(1):751271-751289. [18] Liang R,Chen W,Chen X Y,et al. Dihydroartemisinin inhibits the tumorigenesis and invasion of gastric cancer by regulating STAT1/KDR/MMP9 and P53/BCL2L1/CASP3/7 pathways[J]. Pathology,Research and Practice,2021,218(2):153318-153330. [19] Li Y,Zhou X,Liu J,et al. Dihydroartemisinin inhibits the tumorigenesis and metastasis of breast cancer via downregulating CIZ1 expression associated with TGF-β1 signaling[J]. Life Sciences,2020,248(9):117454-117464. [20] Wu R,Gao Y,Wu J,et al. Semi-synthetic product dihydroartemisinin inhibited fibronectin-1 and integrin-β1 and interfered with the migration of HCCLM6 cells via PI3K-AKT pathway[J]. Biotechnology Letters,2020,42(6):917-926. [21] Zhu X,Yang M,Song Z,et al. Artemether inhibits proliferation,invasion and migration of hepatocellular carcinoma cells via targeting of CYP2J2[J]. Oncology Letters,2022,23(6):180-188. [22] Slezakova S,Ruda-Kucerova J. Anticancer activity of Artemisinin and its derivatives[J]. Anticancer Research,2017,37(11):5995-6003. [23] Willoughby J A,Sundar S N,Cheung M,et al. Artemisinin blocks prostate cancer growth and cell cycle progression by disrupting Sp1 interactions with the cyclin-dependent kinase-4 (CDK4) promoter and inhibiting CDK4 gene expression[J]. Journal of Biological Chemistry,2009,284(4):2203-2213. [24] Ma Q,Liao H,Xu L,et al. Autophagy-dependent cell cycle arrest in esophageal cancer cells exposed to dihydroartemisinin[J]. Chinese Medicine,2020,15(9):37-49. [25] Li B,Bu S,Sun J,et al. Artemisinin derivatives inhibit epithelial ovarian cancer cells via autophagy-mediated cell cycle arrest[J]. Acta Biochimica et Biophysica Sinica,2018,50(12):1227-1235. [26] Greenshields A L,Shepherd T G,Hoskin D W. Contribution of reactive oxygen species to ovarian cancer cell growth arrest and killing by the anti-malarial drug artesunate[J]. Molecular Carcinogenesis,2017,56(1):75-93. [27] Jia J,Qin Y,Zhang L,et al. Artemisinin inhibits gallbladder cancer cell lines through triggering cell cycle arrest and apoptosis[J]. Molecular Medicine Reports,2016,13(5):4461-4468. [28] Xu C,Zhang H,Mu L,et al. Artemisinins as anticancer drugs: Novel therapeutic approaches,molecular mechanisms,and clinical trials[J]. Frontiers in Pharmacology,2020,11(10):529881-529895. [29] Eskandari E,Eaves C J. Paradoxical roles of caspase-3 in regulating cell survival,proliferation,and tumorigenesis[J]. Journal of Cell Biology,2022,221(6):e202201159-e202201172. [30] Efferth T,Rücker G,Falkenberg M,et al. Detection of apoptosis in KG-1a leukemic cells treated with investigational drugs[J]. Arzneimittel Forschung,1996,46(2):196-200. [31] Lang S J,Schmiech M,Hafner S,et al. Antitumor activity of an artemisia annua herbal preparation and identification of active ingredients[J]. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology,2019,62(12):152962-152971. [32] Noori S,Hassan Z M,Farsam V. Artemisinin as a Chinese medicine,selectively induces apoptosis in pancreatic tumor cell line[J]. Chinese Journal of Integrative Medicine,2014,20(8):618-623. [33] Mondal A,Chatterji U. Artemisinin represses telomerase subunits and induces apoptosis in HPV-39 infected human cervical cancer cells[J]. Journal of Cellular Biochemistry,2015,116(9):1968-1981. [34] Pirali M,Taheri M,Zarei S,et al. Artesunate,as a HSP70 ATPase activity inhibitor,induces apoptosis in breast cancer cells[J]. International Journal of Biological Macromolecules,2020,164(5):3369-3375. [35] Cabello C M,Lamore S D,Bair W B,et al. The redox antimalarial dihydroartemisinin targets human metastatic melanoma cells but not primary melanocytes with induction of NOXA-dependent apoptosis[J]. Investigational New Drugs,2012,30(4):1289-1301. [36] Chatterjee R,Shukla A,Chakrabarti K,et al. CLEC12A sensitizes differentially responsive breast cancer cells to the anti-cancer effects of artemisinin by repressing autophagy and inflammation[J]. Frontiers in Oncology,2023,13(12):1242432-1242449. [37] Huang Z,Gan S,Zhuang X,et al. Artesunate inhibits the cell growth in colorectal cancer by promoting ROS-dependent cell senescence and autophagy[J]. Cells,2022,11(16):2472-2492. [38] Zhou X,Chen Y,Wang F,et al. Artesunate induces autophagy dependent apoptosis through upregulating ROS and activating AMPK-mTOR-ULK1 axis in human bladder cancer cells[J]. Chemico-Biological Interactions,2020,331(17):109273-109284. [39] Chen X,He L Y,Lai S,et al. Dihydroartemisinin inhibits the migration of esophageal cancer cells by inducing autophagy[J]. Oncology Letters,2020,20(4):94-102. [40] Zhou Q,Meng Y,Li D,et al. Ferroptosis in cancer: From molecular mechanisms to therapeutic strategies[J]. Signal Transduction and Targeted Therapy,2024,9(1):55-84. [41] Chen F,Fan Y,Hou J,et al. Integrated analysis identifies TfR1 as a prognostic biomarker which correlates with immune infiltration in breast cancer[J]. Aging,2021,13(17):21671-21699. [42] Yuan B,Liao F,Shi Z Z,et al. Dihydroartemisinin inhibits the proliferation,colony formation and induces ferroptosis of lung cancer cells by inhibiting PRIM2/SLC7A11 axis[J]. OncoTargets and Therapy,2020,13(1):10829-10840. [43] Wang Z,Li M,Liu Y,et al. Dihydroartemisinin triggers ferroptosis in primary liver cancer cells by promoting and unfolded protein response‑induced upregulation of CHAC1 expression[J]. Oncology Reports,2021,46(5):240-253. [44] Roh J L,Kim E H,Jang H,et al. Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis[J]. Redox Biology,2017,11(1):254-262. [45] Liang L,Liu Y,Wu X,et al. Artesunate induces ferroptosis by inhibiting the nuclear localization of SREBP2 in myeloma cells[J]. International Journal of Medical Sciences,2023,20(12):1535-1550. [46] Hartupee C,Nagalo B M,Chabu C Y,et al. Pancreatic cancer tumor microenvironment is a major therapeutic barrier and target[J]. Frontiers in Immunology,2024,15(2):1287459-1287475. [47] Zhang Q,Sioud M. Tumor-associated macrophage subsets: Shaping polarization and targeting[J]. International Journal of Molecular Sciences,2023,24(8):7493-7524. [48] Yu R,Jin L,Li F,et al. Dihydroartemisinin inhibits melanoma by regulating CTL/treg anti-tumor immunity and STAT3-mediated apoptosis via IL-10 dependent manner[J]. Journal of Dermatological Science,2020,99(3):193-202. [49] Wang C Z,Wan C,Luo Y,et al. Effects of dihydroartemisinin,a metabolite of artemisinin,on colon cancer chemoprevention and adaptive immune regulation[J]. Molecular Biology Reports,2022,49(4):2695-2709. [50] Mancuso R I,Olalla Saad S T,Azambuja J H. Artesunate switches monocytes to an inflammatory phenotype with the ability to kill leukemic cells[J]. International Journal of Molecular Sciences,2021,22(2):608-621. [51] Cao Y,Feng Y H,Gao L W,et al. Artemisinin enhances the anti-tumor immune response in 4T1 breast cancer cells in vitro and in vivo[J]. International Immunopharmacology,2019,70(5):110-116. [52] Li Z,Munim M B,Sharygin D A,et al. Understanding the Warburg effect in cancer[J]. Cold Spring Harbor Perspectives in Medicine,2024,14(9):a041532. [53] Wong Y K,Xu C,Kalesh K A,et al. Artemisinin as an anticancer drug: Recent advances in target profiling and mechanisms of action[J]. Medicinal Research Reviews,2017,37(6):1492-1517. [54] Wang M,Chen H,He X,et al. Artemisinin inhibits the development of esophageal cancer by targeting HIF-1α to reduce glycolysis levels[J]. Journal of Gastrointestinal Oncology,2022,13(5):2144-2153. [55] Peng Q,Hao L,Guo Y,et al. Dihydroartemisinin inhibited the Warburg effect through YAP1/SLC2A1 pathway in hepatocellular carcinoma[J]. Journal of Natural Medicines,2023,77(1):28-40. [56] Ding X,Zhang Y,Liang J,et al. Dihydroartemisinin potentiates VEGFR-TKIs antitumorigenic effect on osteosarcoma by regulating Loxl2/VEGFA expression and lipid metabolism pathway[J]. Journal of Cancer,2023,14(5):809-820. -