留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

免疫细胞功能紊乱在肝衰竭发生和发展中的研究进展

牟唐维 梁丹 赵昱 况轶群

牟唐维, 梁丹, 赵昱, 况轶群. 免疫细胞功能紊乱在肝衰竭发生和发展中的研究进展[J]. 昆明医科大学学报.
引用本文: 牟唐维, 梁丹, 赵昱, 况轶群. 免疫细胞功能紊乱在肝衰竭发生和发展中的研究进展[J]. 昆明医科大学学报.
Tangwei MOU, Dan LIANG, Yu ZHAO, Yi-qun KUANG. Research Progress on the Role of Immune Cell Dysfunction in the Occurrence and Development of Liver Failure[J]. Journal of Kunming Medical University.
Citation: Tangwei MOU, Dan LIANG, Yu ZHAO, Yi-qun KUANG. Research Progress on the Role of Immune Cell Dysfunction in the Occurrence and Development of Liver Failure[J]. Journal of Kunming Medical University.

免疫细胞功能紊乱在肝衰竭发生和发展中的研究进展

基金项目: 国家自然科学基金(82460391,82360328);昆明医科大学一流学科病原生物学与分子诊断团队(2024XKTDYS09);云南省器官移植重点实验室(202449CE340016);云南省科技厅-昆明医科大学联合专项(202301AY070001-141)
详细信息
    作者简介:

    牟唐维(1992~),女,云南昭通人,助理研究员,主要从事免疫学研究工作

    通讯作者:

    况轶群,E-mail:yq610433@hotmail.com

  • 中图分类号: R392

Research Progress on the Role of Immune Cell Dysfunction in the Occurrence and Development of Liver Failure

More Information
    Corresponding author: 况轶群,博士,教授,博士生导师,云南省高层次引进人才(青年千人),昆明医科大学高层次引进人才(第四层次),昆明医科大学第一附属医院临床医学研究中心副主任(主持工作),主要从事HIV等病原体相关感染和免疫学研究。在国内外学术期刊发表论文83篇,其中SCI文章72篇,引用1282次;参编专著5部;申报专利10项(授权4项);主持国家科技部、NSFC和省市级科研项目16项,参与14项。任世界病毒学会会员、华人抗体协会终身会员、中国性病艾滋病防治协会艾滋病病毒学专业委员会委员等;担任Signal Transduct Target TherNat CommGut MicrobesAIDS等30多个杂志审稿人;国家科技重大专项会议评审专家、NSFC等项目通信评审专家。曾获中国科学院“朱李月华优秀博士生奖”、中国免疫学会首届“青年学者奖”、Dalhousie大学“Reynolds博士后奖”、云南省卫生科技成果一等奖(2020)、云南省科学技术进步奖一等奖(2021)、云南省卫生科技成果二等奖(2023)、云南省科学技术进步奖二等奖(2024)等奖励和荣誉。
  • 摘要: 肝脏作为人体核心代谢器官,承担着蛋白质合成、毒物代谢、免疫调节等多种关键生理功能。肝衰竭是终末期肝病患者的主要疾病进程,临床特征包括凝血功能障碍、胆红素代谢异常以及多器官衰竭。根据病程的不同,肝衰竭可分为急性、亚急性、慢加急性及慢性四类,其致病机制复杂,涉及病原感染、免疫微环境的失调和肠道菌群紊乱等多种因素的相互作用,给临床诊治带来了巨大挑战。本文综述了肝衰竭在发生发展过程中天然和适应性免疫应答异常,以及免疫代谢紊乱的分子机制,深入探讨免疫细胞的功能紊乱在该疾病过程中的关键作用,旨在为肝衰竭的靶向免疫治疗提供理论依据。
  • 图  1  肝衰竭免疫病理发生发展时序图

    注:肝衰竭患者中,先天和适应性免疫相互作用过度炎症和免疫抑制共存,引发多器官损伤。其中代表相互影响。

    Figure  1.  Timeline of the immunopathogenesis of liver failure

    图  2  免疫细胞在肝衰中的作用机制

    注:NET:中性粒细胞胞外诱捕网;MerTK:MER受体酪氨酸激酶;TERM-2:髓系细胞触发受体2;EZH2:Zeste同源物增强子2;SOCS1:细胞因子信号抑制物1;KCTD9:钾通道四聚体结构域9;BTLA:B和T淋巴细胞弱化因子;VISTA:T细胞激活抑制物免疫球蛋白可变区结构域。

    Figure  2.  The mechanism of immune cells in liver failure

    图  3  免疫代谢与肝衰

    注:ATX:自分泌运动分子;LPC:溶血磷脂酰胆碱;LPA:溶血磷脂酸;MerTK:MER受体酪氨酸激酶;XCT:谷氨酰胺转运体;DHODH:二氢乳清酸脱氢酶;FSP1:铁死亡抑制蛋白1;GSK-3β:糖原合酶激酶3β;Nrf2:核因子红系2相关因子2;KYN-IDO:犬尿氨酸-吲哚胺2,3-双加氧酶通路。

    Figure  3.  Immunometabolism in liver failure

  • [1] 中华医学会肝病学分会重型肝病与人工肝学组, 中华医学会感染病学分会肝衰竭与人工肝学组. 肝衰竭诊治指南(2024年版)[J]. 临床肝胆病杂志, 2024, 40(12): 2371-2387.
    [2] Mak L Y, Liu K, Chirapongsathorn S, et al. Liver diseases and hepatocellular carcinoma in the Asia-Pacific region: burden, trends, challenges and future directions[J]. Nat Rev Gastroenterol Hepatol, 2024, 21(12): 834-851. doi: 10.1038/s41575-024-00967-4
    [3] Devarbhavi H, Asrani S K, Arab J P, et al. Global burden of liver disease: 2023 update[J]. J Hepatol, 2023, 79(2): 516-537.
    [4] Hernaez R, Kramer J R, Liu Y, et al. Prevalence and short-term mortality of acute-on-chronic liver failure: A national cohort study from the USA[J]. J Hepatol, 2019, 70(4): 639-647. doi: 10.1016/j.jhep.2018.12.018
    [5] Khanam A, Kottilil S. Abnormal Innate Immunity in Acute-on-Chronic Liver Failure: Immunotargets for Therapeutics[J]. Front Immunol, 2020, 11: 2013. doi: 10.3389/fimmu.2020.02013
    [6] Ahmed O, Robinson M W, O'Farrelly C. Inflammatory processes in the liver: Divergent roles in homeostasis and pathology[J]. Cell Mol Immunol, 2021, 18(6): 1375-1386. doi: 10.1038/s41423-021-00639-2
    [7] Wen Y, Lambrecht J, Ju C, et al. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities[J]. Cell Mol Immunol, 2021, 18(1): 45-56. doi: 10.1038/s41423-020-00558-8
    [8] Siwicki M, Gort-Freitas N A, Messemaker M, et al. Resident kupffer cells and neutrophils drive liver toxicity in cancer immunotherapy[J]. Sci Immunol, 2021, 6(61): eabi7083. doi: 10.1126/sciimmunol.abi7083
    [9] Wu W, Sun S, Wang Y, et al. Circulating neutrophil dysfunction in HBV-related acute-on-chronic liver failure[J]. Front Immunol, 2021, 12: 620365. doi: 10.3389/fimmu.2021.620365
    [10] Liu K, Wang F S, Xu R. Neutrophils in liver diseases: pathogenesis and therapeutic targets[J]. Cell Mol Immunol, 2021, 18(1): 38-44. doi: 10.1038/s41423-020-00560-0
    [11] Chauhan A, Sheriff L, Hussain M T, et al. The platelet receptor CLEC-2 blocks neutrophil mediated hepatic recovery in acetaminophen induced acute liver failure[J]. Nat Commun, 2020, 11(1): 1939. doi: 10.1038/s41467-020-15584-3
    [12] Kolodziejczyk A A, Federici S, Zmora N, et al. Acute liver failure is regulated by MYC-and microbiome-dependent programs[J]. Nat Med, 2020, 26(12): 1899-1911. doi: 10.1038/s41591-020-1102-2
    [13] Meijenfeldt F A, Stravitz R T, Zhang J, et al. Generation of neutrophil extracellular traps in patients with acute liver failure is associated with poor outcome[J]. Hepatology, 2022, 75(3): 623-633. doi: 10.1002/hep.32174
    [14] Triantafyllou E, Pop O T, Possamai LA, et al. MerTK expressing hepatic macrophages promote the resolution of inflammation in acute liver failure[J]. Gut, 2018, 67(2): 333-347. doi: 10.1136/gutjnl-2016-313615
    [15] Albillos A, Hera Ad Ade L, Reyes E, et al. Tumour necrosis factor-alpha expression by activated monocytes and altered T-cell homeostasis in ascitic alcoholic cirrhosis: amelioration with norfloxacin[J]. J Hepatol, 2004, 40(4): 624-631. doi: 10.1016/j.jhep.2003.12.010
    [16] Wasmuth H E, Kunz D, Yagmur E, et al. Patients with acute on chronic liver failure display "sepsis-like" immune paralysis[J]. J Hepatol, 2005, 42(2): 195-201. doi: 10.1016/j.jhep.2004.10.019
    [17] Triantafyllou E, Woollard K J, McPhail M J W, et al. The role of monocytes and macrophages in acute and acute-on-chronic liver failure[J]. Front Immunol, 2018, 9: 2948. doi: 10.3389/fimmu.2018.02948
    [18] Bernsmeier C, Pop O T, Singanayagam A, et al. Patients with acute-on-chronic liver failure have increased numbers of regulatory immune cells expressing the receptor tyrosine kinase MERTK[J]. Gastroenterology, 2015, 148(3): 603-615. e614.
    [19] Leonhardt J, Haider R S, Sponholz C, et al. Circulating bile acids in liver failure activate TGR5 and induce monocyte dysfunction[J]. Cell Mol Gastroenterol Hepatol, 2021, 12(1): 25-40. doi: 10.1016/j.jcmgh.2021.01.011
    [20] Trovato F M, Zia R, Napoli S, et al. Dysregulation of the lysophosphatidylcholine/autotaxin/lysophosphatidic acid axis in acute-on-chronic liver failure is associated with mortality and systemic inflammation by lysophosphatidic acid-dependent monocyte activation[J]. Hepatology, 2021, 74(2): 907-925. doi: 10.1002/hep.31738
    [21] Korf H, du Plessis J, van Pelt J, et al. Inhibition of glutamine synthetase in monocytes from patients with acute-on-chronic liver failure resuscitates their antibacterial and inflammatory capacity[J]. Gut, 2019, 68(10): 1872-1883. doi: 10.1136/gutjnl-2018-316888
    [22] Singanayagam A, Triantafyllou E. Macrophages in Chronic Liver Failure: Diversity, Plasticity and Therapeutic Targeting[J]. Front Immunol, 2021, 12: 661182. doi: 10.3389/fimmu.2021.661182
    [23] Nielsen M C, Hvidbjerg Gantzel R, Clària J, et al. Macrophage activation markers, CD163 and CD206, in acute-on-chronic liver failure[J]. Cells, 2020, 9(5).
    [24] Perugorria M J, Esparza-Baquer A, Oakley F, et al. Non-parenchymal TREM-2 protects the liver from immune-mediated hepatocellular damage[J]. Gut, 2019, 68(3): 533-546. doi: 10.1136/gutjnl-2017-314107
    [25] Triantafyllou E, Gudd C L, Mawhin M A, et al. PD-1 blockade improves kupffer cell bacterial clearance in acute liver injury[J]. J Clin Invest, 2021, 131(4).
    [26] Bai L, Kong M, Duan Z, et al. M2-like macrophages exert hepatoprotection in acute-on-chronic liver failure through inhibiting necroptosis-S100A9-necroinflammation axis[J]. Cell Death Dis, 2021, 12(1): 93. doi: 10.1038/s41419-020-03378-w
    [27] Zhang S, Jiang L, Hu H, et al. Pretreatment of exosomes derived from hUCMSCs with TNF-α ameliorates acute liver failure by inhibiting the activation of NLRP3 in macrophage[J]. Life Sci, 2020, 246: 117401. doi: 10.1016/j.lfs.2020.117401
    [28] Yu X, Zhou L, Deng Q, et al. rhIL-1Ra reduces hepatocellular apoptosis in mice with acute liver failure mainly by inhibiting the activities of kupffer cells[J]. Eur J Pharmacol, 2019, 854: 338-346. doi: 10.1016/j.ejphar.2019.03.031
    [29] Wang J, Liu Y, Ding H, et al. Mesenchymal stem cell-secreted prostaglandin E(2) ameliorates acute liver failure via attenuation of cell death and regulation of macrophage polarization[J]. Stem Cell Res Ther, 2021, 12(1): 15. doi: 10.1186/s13287-020-02070-2
    [30] Yu H, Yang W, Huang J, et al. GPR120 induces regulatory dendritic cells by inhibiting HK2-dependent glycolysis to alleviate fulminant hepatic failure[J]. Cell Death Dis, 2021, 13(1): 1. doi: 10.1038/s41419-021-04394-0
    [31] Wang Y, Wang Q, Wang B, et al. Inhibition of EZH2 ameliorates bacteria-induced liver injury by repressing RUNX1 in dendritic cells[J]. Cell Death Dis, 2020, 11(11): 1024. doi: 10.1038/s41419-020-03219-w
    [32] Li SS, Yang M, Chen YP, et al. Dendritic cells with increased expression of suppressor of cytokine signaling 1(SOCS1) gene ameliorate lipopolysaccharide/d-galactosamine-induced acute liver failure[J]. Mol Immunol, 2018, 101: 10-18. doi: 10.1016/j.molimm.2018.05.016
    [33] Chen Y, Hou C, Yang N, et al. Regulatory Effect of JAK2/STAT3 on the immune function of endotoxin-tolerant dendritic cells and its involvement in acute liver failure[J]. J Clin Transl Hepatol, 2022, 10(5): 879-890. doi: 10.14218/JCTH.2021.00175
    [34] Li H, Zhai N, Wang Z, et al. Regulatory NK cells mediated between immunosuppressive monocytes and dysfunctional T cells in chronic HBV infection[J]. Gut, 2018, 67(11): 2035-2044. doi: 10.1136/gutjnl-2017-314098
    [35] Chen T, Zhu L, Zhou Y, et al. KCTD9 contributes to liver injury through NK cell activation during hepatitis B virus-induced acute-on-chronic liver failure[J]. Clin Immunol, 2013, 146(3): 207-216. doi: 10.1016/j.clim.2012.12.013
    [36] Zhang X, Zhu L, Zhou Y, et al. Interference with KCTD9 inhibits NK cell activation and ameliorates fulminant liver failure in mice[J]. BMC Immunol, 2018, 19(1): 20. doi: 10.1186/s12865-018-0256-x
    [37] Taru V, Szabo G, Mehal W, et al. Inflammasomes in chronic liver disease: Hepatic injury, fibrosis progression and systemic inflammation[J]. J Hepatol, 2024, 81(5): 895-910. doi: 10.1016/j.jhep.2024.06.016
    [38] Huang S, Wang Y, Xie S, et al. Hepatic TGFβr1 deficiency attenuates lipopolysaccharide/D-galactosamine-induced acute liver failure through inhibiting GSK3β-Nrf2-Mediated hepatocyte apoptosis and ferroptosis[J]. Cell Mol Gastroenterol Hepatol, 2022, 13(6): 1649-1672. doi: 10.1016/j.jcmgh.2022.02.009
    [39] Xiang X, Feng D, Hwang S, et al. Interleukin-22 ameliorates acute-on-chronic liver failure by reprogramming impaired regeneration pathways in mice[J]. J Hepatol, 2020, 72(4): 736-745. doi: 10.1016/j.jhep.2019.11.013
    [40] Zhou T, Sun Y, Li M, et al. Enhancer of zeste homolog 2-catalysed H3K27 trimethylation plays a key role in acute-on-chronic liver failure via TNF-mediated pathway[J]. Cell Death Dis, 2018, 9(6): 590. doi: 10.1038/s41419-018-0670-2
    [41] Fu B, Yin S, Lin X, et al. PTPN14 aggravates inflammation through promoting proteasomal degradation of SOCS7 in acute liver failure[J]. Cell Death Dis, 2020, 11(9): 803. doi: 10.1038/s41419-020-03014-7
    [42] Du X X, Shi Y, Yang Y, et al. DAMP molecular IL-33 augments monocytic inflammatory storm in hepatitis B-precipitated acute-on-chronic liver failure[J]. Liver Int, 2018, 38(2): 229-238. doi: 10.1111/liv.13503
    [43] Khanam A, Trehanpati N, Sarin S K. Increased interleukin-23 receptor (IL-23R) expression is associated with disease severity in acute-on-chronic liver failure[J]. Liver Int, 2019, 39(6): 1062-1070. doi: 10.1111/liv.14015
    [44] Zaccherini G, Weiss E, Moreau R. Acute-on-chronic liver failure: Definitions, pathophysiology and principles of treatment[J]. JHEP Rep, 2021, 3(1): 100176. doi: 10.1016/j.jhepr.2020.100176
    [45] Moreau R. The pathogenesis of ACLF: The inflammatory response and immune function[J]. Semin Liver Dis, 2016, 36(2): 133-140. doi: 10.1055/s-0036-1583199
    [46] Moreau R, Clària J, Aguilar F, et al. Blood metabolomics uncovers inflammation-associated mitochondrial dysfunction as a potential mechanism underlying ACLF[J]. J Hepatol, 2020, 72(4): 688-701. doi: 10.1016/j.jhep.2019.11.009
    [47] Filliol A, Piquet-Pellorce C, Raguénès-Nicol C, et al. RIPK1 protects hepatocytes from kupffer cells-mediated TNF-induced apoptosis in mouse models of PAMP-induced hepatitis[J]. J Hepatol, 2017, 66(6): 1205-1213. doi: 10.1016/j.jhep.2017.01.005
    [48] Yan Y Y, Lin S, Zhu Y Y. Damage-associated molecular patterns and liver failure[J]. Zhonghua Gan Zang Bing Za Zhi, 2016, 24(8): 636-640.
    [49] Wu J, Han M, Li J, et al. Pattern recognition receptors and liver failure[J]. Crit Rev Immunol, 2019, 39(4): 289-311. doi: 10.1615/CritRevImmunol.2019031012
    [50] Qiang R, Liu X Z, Xu JC. The immune pathogenesis of acute-on-chronic liver failure and the danger hypothesis[J]. Front Immunol, 2022, 13: 935160. doi: 10.3389/fimmu.2022.935160
    [51] Ma M, Jiang W, Zhou R. DAMPs and DAMP-sensing receptors in inflammation and diseases[J]. Immunity, 2024, 57(4): 752-771. doi: 10.1016/j.immuni.2024.03.002
    [52] Fan X G, Pei S Y, Zhou D, et al. Melittin ameliorates inflammation in mouse acute liver failure via inhibition of PKM2-mediated Warburg effect[J]. Acta Pharmacol Sin, 2021, 42(8): 1256-1266. doi: 10.1038/s41401-020-00516-0
    [53] Rueschenbaum S, Ciesek S, Queck A, et al. Dysregulated adaptive immunity is an early event in liver cirrhosis preceding acute-on-chronic liver failure[J]. Front Immunol, 2020, 11: 534731.
    [54] Khamri W, Abeles R D, Hou TZ, et al. Increased expression of cytotoxic T-lymphocyte-associated protein 4 by T cells, Induced by B7 in sera, reduces adaptive immunity in patients with acute liver failure[J]. Gastroenterology, 2017, 153(1): 263-276. e268. doi: 10.1053/j.gastro.2017.03.023
    [55] Wang F, Sun W, Xiao Q, et al. Peripheral T lymphocytes predict the severity and prognosis in patients with HBV-related acute-on-chronic liver failure[J]. Medicine, 2021, 100(5): e24075. doi: 10.1097/MD.0000000000024075
    [56] Du B, Teng J, Yin R, et al. Increased circulating T follicular helper cells induced via IL-12/21 in patients with acute on chronic hepatitis B liver failure[J]. Front Immunol, 2021, 12: 641362. doi: 10.3389/fimmu.2021.641362
    [57] Yu X, Yang F, Shen Z, et al. BTLA contributes to acute-on-chronic liver failure infection and mortality through CD4+ T-cell exhaustion[J]. Nat Commun, 2024, 15(1): 1835. doi: 10.1038/s41467-024-46047-8
    [58] Yao J, Ji Y, Liu T, et al. Single-cell RNA sequencing shows T-cell exhaustion landscape in the peripheral blood of patients with hepatitis B virus-associated acute-on-chronic liver failure[J]. Gut Liver, 2024, 18(3): 520-530. doi: 10.5009/gnl220449
    [59] Zhou X, Li Y, Ji Y, et al. PD-1 Involvement in peripheral blood CD8+ T lymphocyte dysfunction in patients with acute-on-chronic liver failure[J]. J Clin Transl Hepatol, 2021, 9(3): 283-290.
    [60] Tang L, Wang X, Zhao R, et al. Yi-Qi-Jian-Pi formula ameliorates immune function in acute-on-chronic liver failure by upregulating autophagy and mitochondrial biogenesis in CD8+ T lymphocytes[J]. J Ethnopharmacol, 2023, 308: 116276. doi: 10.1016/j.jep.2023.116276
    [61] Shen C, Yan W Z, Zhao CY, et al. Increased CD4+CD25+ regulatory T cells correlate with poor short-term outcomes in hepatitis B virus-related acute-on-chronic liver failure patients[J]. J Microbiol Immunol Infect, 2015, 48(2): 137-146. doi: 10.1016/j.jmii.2013.11.001
    [62] Tan N H, Chen B, Peng J, et al. Treg/Th17 cell balance in patients with hepatitis B virus-related acute-on-chronic liver failure at different disease stages[J]. Biomed Res Int, 2021, 2021: 9140602. doi: 10.1155/2021/9140602
    [63] Zhang Y, Zhang X, Han J, et al. Downregulated VISTA enhances Th17 differentiation and aggravates inflammation in patients with acute-on-chronic liver failure[J]. Hepatol Int, 2023, 17(4): 1000-1015. doi: 10.1007/s12072-023-10505-0
    [64] Wang X, Zhong Y, Zhang R, et al. Wenyang huazhuo tuihuang formula inhibits the Th17/Treg cell Imbalance and protects against acute-on-chronic liver failure[J]. Evid Based Complement Alternat Med, 2022, 2022: 5652172.
    [65] Chen L, Huang Y, Chen Y, et al. Resolvin D1 promotes the resolution of inflammation in the ACLF rat model by increasing the proportion of Treg cells[J]. Immun Inflamm Dis, 2023, 11(11): e1076. doi: 10.1002/iid3.1076
    [66] Farci P, Diaz G, Chen Z, et al. B cell gene signature with massive intrahepatic production of antibodies to hepatitis B core antigen in hepatitis B virus-associated acute liver failure[J]. Proc Natl Acad Sci U S A, 2010, 107(19): 8766-8771. doi: 10.1073/pnas.1003854107
    [67] Perez-Andres M, Paiva B, Nieto WG, et al. Human peripheral blood B-cell compartments: a crossroad in B-cell traffic[J]. Cytometry B Clin Cytom, 2010, 78(Suppl 1): S47-60.
    [68] Martin V G, Wu Y B, Townsend C L, et al. Transitional B cells in early human B cell development-time to revisit the paradigm?[J]. Front Immunol, 2016, 7: 546.
    [69] Cardoso C C, Matiollo C, Pereira C H J, et al. B-cell compartment abnormalities are associated with ACLF and mortality in patients with liver cirrhosis[J]. Clin Res Hepatol Gastroenterol, 2021, 45(4): 101698. doi: 10.1016/j.clinre.2021.101698
    [70] Makowski L, Chaib M, Rathmell J C. Immunometabolism: from basic mechanisms to translation[J]. Immunol Rev, 2020, 295(1): 5-14. doi: 10.1111/imr.12858
    [71] Zhang I W, Curto A, López-Vicario C, et al. Mitochondrial dysfunction governs immunometabolism in leukocytes of patients with acute-on-chronic liver failure[J]. J Hepatol, 2022, 76(1): 93-106. doi: 10.1016/j.jhep.2021.08.009
    [72] Yu Z, Li J, Ren Z, et al. Switching from fatty acid oxidation to glycolysis improves the outcome of acute-on-chronic liver failure[J]. Adv Sci(Weinh), 2020, 7(7): 1902996.
    [73] Clària J, Moreau R, Fenaille F, et al. Orchestration of tryptophan-kynurenine pathway, Acute decompensation, and acute-on-chronic liver failure in cirrhosis[J]. Hepatology, 2019, 69(4): 1686-1701. doi: 10.1002/hep.30363
    [74] Park S H, Kwak J A, Jung S H, et al. Piperidylmethyloxychalcone improves immune-mediated acute liver failure via inhibiting TAK1 activity[J]. Exp Mol Med, 2017, 49(11): e392. doi: 10.1038/emm.2017.156
    [75] Bajaj J S, Reddy K R, O'Leary J G, et al. Serum levels of metabolites produced by intestinal microbes and lipid moieties independently associated with acute-on-chronic liver failure and death in patients with cirrhosis[J]. Gastroenterology, 2020, 159(5): 1715-1730. e1712. doi: 10.1053/j.gastro.2020.07.019
    [76] Li J, Liang X, Jiang J, et al. PBMC transcriptomics identifies immune-metabolism disorder during the development of HBV-ACLF[J]. Gut, 2022, 71(1): 163-175. doi: 10.1136/gutjnl-2020-323395
  • [1] 刘一帆, 罗星, 宋天慈, 杨志惠.  恶性黑色素瘤靶向治疗及其耐药机制研究进展, 昆明医科大学学报. 2025, 46(2): 158-163. doi: 10.12259/j.issn.2095-610X.S20250222
    [2] 王兴粉, 邓玥, 杨丽华.  卵巢癌脂质代谢相关基因预后模型的构建及免疫浸润分析, 昆明医科大学学报. 2024, 45(4): 17-25. doi: 10.12259/j.issn.2095-610X.S20240403
    [3] 万鑫蕊, 王晓燕, 王霖, 马志强, 李才信, 许世涛, 唐兴蕊, 毛红艳.  非结核分枝杆菌感染者肝肾功能、免疫功能和耐药性分析, 昆明医科大学学报. 2023, 44(11): 113-119. doi: 10.12259/j.issn.2095-610X.S20231117
    [4] 师雨晗, 李菁, 刘舒媛, 赵婷, 杨净思, 史荔, 梁疆莉.  壮族人群ERAP基因多态性与脊灰疫苗序贯免疫诱导的抗体应答的相关性分析, 昆明医科大学学报. 2023, 44(7): 22-28. doi: 10.12259/j.issn.2095-610X.S20230711
    [5] 李露, 田云粉.  肠道菌群与儿童非酒精性脂肪性肝病的研究进展, 昆明医科大学学报. 2023, 44(7): 148-155. doi: 10.12259/j.issn.2095-610X.S20230708
    [6] 李晨希, 查卓岑, 李娜, 罗琳, 杨扬, 陈文林.  三阳性乳腺癌的强化辅助治疗方案选择, 昆明医科大学学报. 2023, 44(10): 180-188. doi: 10.12259/j.issn.2095-610X.S20231020
    [7] 李婷, 郭维华.  糖酵解重编程在口腔鳞状细胞癌中的研究进展, 昆明医科大学学报. 2023, 44(6): 155-161. doi: 10.12259/j.issn.2095-610X.S20230611
    [8] 陆小华, 袁洪新.  BTLA、CTLA-4基因多态性与肝癌TACE联合靶向治疗疗效及预后相关性, 昆明医科大学学报. 2023, 44(9): 126-135. doi: 10.12259/j.issn.2095-610X.S20230927
    [9] 罗巧, 石宏, 王绍波.  α7-烟碱乙酰胆碱受体在肺癌发生、发展及治疗中的作用, 昆明医科大学学报. 2022, 43(2): 145-149. doi: 10.12259/j.issn.2095-610X.S20220226
    [10] 向照, 杨晋辉.  肝衰竭患者非生物型人工肝治疗112例临床疗效, 昆明医科大学学报. 2021, 42(12): 140-144. doi: 10.12259/j.issn.2095-610X.S20211034
    [11] 周玮莎, 张乐, 彭静, 陈寿坤, 刘梦君, 符晓, 唐志飞, 岳云璇.  血浆置换加双重血浆分子吸附对自身免疫性肝炎合并肝衰竭的细胞因子的影响, 昆明医科大学学报. 2021, 42(4): 73-77. doi: 10.12259/j.issn.2095-610X.S20210414
    [12] 马晓骉, 罗峰, 高永亮, 郝静超.  CIK细胞免疫疗法联合化疗治疗非小细胞肺癌的临床疗效, 昆明医科大学学报. 2020, 41(12): 60-67. doi: 10.12259/j.issn.2095-610X.S20201215
    [13] 邓玉梅, 宋家美, 刘仲伟, 杨洁, 孟昱时.  淋巴细胞免疫治疗次数对复发性流产的疗效观察, 昆明医科大学学报. 2019, 40(10): 150-153.
    [14] 张乐, 岳云璇, 夏加伟, 彭静, 李晖, 唐理斌.  非生物型人工肝治疗肝衰竭的疗效评价, 昆明医科大学学报. 2017, 38(01): 82-87.
    [15] 张乐, 唐理斌, 姜建杰, 夏加伟, 吕正煊, 李云珍, 韩留鑫, 白彬.  非生物型人工肝技术治疗肝衰竭合并肝肾综合征, 昆明医科大学学报. 2017, 38(06): 36-39.
    [16] 汪亚玲.  非生物型人工肝与中药结肠透析优化治疗肝衰竭的临床研究, 昆明医科大学学报. 2015, 36(01): -1.
    [17] 王珏.  云南小耳猪胰岛细胞移植治疗糖尿病恒河猴免疫方案探讨, 昆明医科大学学报. 2014, 35(05): -.
    [18] 王虹粤.  MARS人工肝在肝衰竭并发症中的观察与护理, 昆明医科大学学报. 2014, 35(12): -1.
    [19] 陈贤玉.  曲妥珠单抗1治疗HER-2过表达乳腺癌的研究进展, 昆明医科大学学报. 2013, 34(12): -1.
    [20] 许克东.  Cytohesin-2在肝癌细胞株中的表达及调控Hep3B细胞增殖作用的研究, 昆明医科大学学报. 2013, 34(02): -.
  • 加载中
图(3)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  9
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 网络出版日期:  2025-09-22

目录

    /

    返回文章
    返回