Study on Differential Expression Profile of lncRNA between Concurrent Chemoradioresistant Nasopharyngeal Carcinoma Cell Lines and Parental Cell Lines
-
摘要:
目的 分析鼻咽癌同期放化疗抵抗细胞株与亲本细胞株间差异表达的长链非编码RNA(long non-coding RNA,lncRNA),探索lncRNA在鼻咽癌同期放化疗抵抗中可能发挥的作用。 方法 体外构建鼻咽癌CEN1和CNE2细胞同期放化疗抵抗模型,诱导鼻咽癌细胞同期放化疗抵抗细胞株CEN1CRR和CNE2CRR,应用高通量测序筛选2组细胞株间差异表达的lncRNAs,对差异表达的lncRNAs的靶基因进行GO和KEGG分析。 结果 以Log2FC > 1或 < -1,FDR < 0.05为差异表达标准,和CNE1相比,CNE1CRR差异表达的lncRNAs2746个(358个上调,2063 个下调);和CNE2相比,CNE2CRR差异表达的lncRNAs3475个(265个上调,520个下调);此外,387个lncRNAs在CNE1CRR和CNE2CRR中表达同时下调,49个lncRNAs在CNE1CRR和CNE2CRR中同时上调。在GO分析中发现,2组细胞中差异表达lncRNAs的靶基因在生物过程(biological process,BP)、分子功能(molecular function,MF)、细胞成分(cellular component,CC)等方面均有参与。在KEGG分析结果中发现,CNE1组细胞中,差异lncRNAs的靶基因主要富集的信号通路有细胞凋亡、病毒致癌、代谢途径等。CNE2组细胞中,差异lncRNAs的靶基因主要富集的信号通路有代谢途径(硫辛酸、磷酸戊糖、花生四烯酸、醚脂质)、T细胞受体信号通路、核苷酸切除修复等(P < 0.05)。 结论 同期放化疗抵抗细胞株与亲本细胞株的lncRNA表达谱存在明显差异,这些差异表达的lncRNA可能参与了鼻咽癌的同期放化疗抵抗,并为其机制研究奠定基础。 -
关键词:
- 长链非编码RNA(lncRNA) /
- 表达谱 /
- 鼻咽癌细胞 /
- 同期放化疗抵抗 /
- 高通量测序
Abstract:Objective To analyze the long non coding RNA (lncRNA) differentially expressed between nasopharyngeal carcinoma cell lines resistant to concurrent radiotherapy and chemotherapy and their parent cell lines, and explore the possible role of lncRNA in nasopharyngeal carcinoma resistance to concurrent radiotherapy and chemotherapy. Methods The concurrent chemoradiotherapy resistance model of nasopharyngeal carcinoma CEN1 and CNE2 cells was constructed in vitro, and the concurrent chemoradiotherapy resistance cell lines CEN1CRR and CNE2CRR of nasopharyngeal carcinoma cells were induced. The differentially expressed lncRNAs between the two groups of cell lines were screened by high-throughput sequencing, and the target genes of the differentially expressed lncRNAs were analyzed by GO and KEGG. Results With Log2FC > 1 or < - 1 and FDR < 0.05 as the differential expression criteria, 2746 lncRNAs (358 up-regulated and 2063 down-regulated) were differentially expressed in CNE1 CRR compared with CNE1. Compared with CNE2, CNE2CRR differentially expressed 3475 lncRNAs (265 up-regulated, 520 down-regulated). In addition, 387 lncRNAs were downregulated in CNE1CRR and CNE2CRR, and 49 lncRNAs were upregulated in CNE1CRR and CNE2CRR. GO analysis showed that the target genes differentially expressing lncRNAs in the two groups of cells were involved in biological process (BP), molecular function (MF), and cell component (CC). In the KEGG analysis results, it was found that in CNE1 group cells, the main signal pathways for the enrichment of target genes of differential lncRNAs were apoptosis, viral carcinogenesis, metabolic pathways, etc. In CNE2 group, the target genes of differential lncRNAs were mainly enriched through metabolic pathways (lipoic acid, pentose phosphate, arachidonic acid, ether lipid), T cell receptor signaling pathways, nucleotide excision repair, etc. (P < 0.05). Conclusions There are significant differences in lncRNA expression profiles between concurrent chemoradiotherapy-resistant cell lines and parental cell lines. These differentially expressed lncRNAs may participate in concurrent chemoradiotherapy resistance of nasopharyngeal carcinoma, and lay a foundation for its mechanism research. -
表 1 CNE1和CNE2放化疗抵抗细胞鉴别的放射生物学参数
Table 1. Radiobiological parameters to identify the chemoradioresistance of CNE1 andCNE2
分组 SF2 D0(Gy) Dq(Gy) CNE1 0.60 1.96 1.41 CNE1 CRR 0.65 2.30 1.53 CNE2 0.50 1.93 0.89 CNE2 CRR 0.68 2.55 1.57 表 2 CNE1CRR 及CNE2CRR中上调或下调前10位的lncRNAs
Table 2. Top 10 lncRNAs up-regulated and down-regulated in CNE1CRR and CNE2CRR
上调lncRNA Log2FC 下调lncRNA Log2FC CNE1CRR USP27X-AS1 10.13 LOC100505817 −9.96 LOC100131315 10.12 LOC102723739 −8.77 LINC00514 9.32 LINC01004 −8.71 LINC00466 9.16 LOC102724281 −8.51 XIST 8.77 CPS1-IT1 −8.44 COLCA1 8.62 CDKN2B-AS1 −8.41 LOC102724360 7.96 GABPB1-AS1 −8.23 LOC101929042 7.44 LOC100505771 −8.22 LOC101926931 7.06 SNHG10 −8.03 LOC101929173 6.47 AC091729.9 −7.96 CNE2CRR LOC100507103 4.84 LOC101928152 −5.82 DBH-AS1 4.63 LINC00239 −5.46 LOC101927037 4.52 LINC00992 −5.39 LOC102724255 4.26 LOC101929173 −5.39 LINC00470 4.02 LINC00638 −5.24 LOC113230 3.84 SEC24B-AS1 −5.07 LOC101928430 3.58 IL21-AS1 −4.89 LOC100996442 3.52 TMEM254-AS1 −4.87 LOC642366 3.39 LINC00968 −4.87 LRP4-AS1 3.39 LOC101928117 −4.77 表 3 CNE1和CNE2组差异lncRNAs靶基因通路富集
Table 3. Pathway enrichment of differentially expressed lncRNAs target genes in CNE1 and CNE2 groups
通路编号 通路名称 富集指数 数量 FisherP CNE1组 04141 Proteinprocessingin endoplasmic reticulum 2.21 14 < 0.0001* 05162 Measles 2.17 11 0.01* 04210 Apoptosis 2.35 8 0.02* 05203 Viral carcinogenesis 1.79 14 0.02* 01212 Fatty acid metabolism 2.76 5 0.03* 05169 Epstein-Barr virus infection 1.71 13 0.04* 05166 HTLV-I infection 1.61 16 0.04* 00310 Lysine degradation 2.6 5 0.04* 01100 Metabolic pathways 1.25 55 0.04* 00900 Terpenoid backbone biosynthesis 3.78 14 0.04* CNE2组 00590 Arachidonic acid metabolism 4.81 4 0.01* 04660 T cell receptor signaling pathway 3.75 5 0.01* 00565 Ether lipid metabolism 5.84 3 0.01* 04141 Protein processing in endoplasmic reticulum 2.92 6 0.02* 03420 Nucleotide excision repair 5.22 3 0.02* 05014 Amyotrophic lateral sclerosis (ALS) 4.54 3 0.03* 00785 Lipoic acid metabolism 27.24 1 0.04* 00030 Pentose phosphate pathway 5.84 2 0.05 *P < 0.05。 -
[1] Gong L,Kwong D L,Dai W,et al. The stromal and immune landscape of nasopharyngeal carcinoma and its implications for precision medicine targeting the tumor microenvironment[J]. Frontiers in Oncology,2021,11:744889. doi: 10.3389/fonc.2021.744889 [2] Chen Y P,Chan A,Le QT,et al. Nasopharyngeal carcinoma[J]. Lancet,2019,394(10192):64-80. doi: 10.1016/S0140-6736(19)30956-0 [3] 梁锌,杨剑,高婷,等. 中国鼻咽癌流行概况[J]. 中国肿瘤,2016,25(11):835-840. doi: 10.11735/j.issn.1004-0242.2016.11.A001 [4] Chen Y P,Ismaila N,Chua M,et al. Chemotherapy in combination with radiotherapy for definitive-intent treatment of stage II-IVA nasopharyngeal carcinoma:CSCO and ASCO guideline[J]. J Clin Oncol,2021,39(7):840-859. doi: 10.1200/JCO.20.03237 [5] Huang B,Li Y,Deng Z,et al. Regulatory mechanism of lncRNA CTBP1-AS2 in nasopharyngeal carcinoma cell proliferation and apoptosis via the miR-140-5p/BMP2 axis[J]. Protein Pept Lett,2022,29(7):621-630. [6] Cui M,Chang Y,Fang Q G,et al. Non-coding RNA Pvt1 promotes cancer stem cell-Like traits in nasopharyngeal cancer via inhibiting miR-1207[J]. Pathol Oncol Res,2019,25(4):1411-1422. doi: 10.1007/s12253-018-0453-1 [7] Estrada-Meza C,Torres-Copado A,Loreti G L,et al. Recent insights into the microRNA and long non-coding RNA-mediated regulation of stem cell populations[J]. 3 Biotech,2022,12(10):270. doi: 10.1007/s13205-022-03343-8 [8] Tang Y,He X. Long non-coding RNAs in nasopharyngeal carcinoma:biological functions and clinical applications[J]. Mol Cell Biochem,2021,476(9):3537-3550. doi: 10.1007/s11010-021-04176-4 [9] Wang Y H,Guo Z,An L,et al. LINC-PINT impedes DNA repair and enhances radiotherapeutic response by targeting DNA-PKcs in nasopharyngeal cancer[J]. Cell Death Dis,2021,12(5):454. doi: 10.1038/s41419-021-03728-2 [10] 刘珊. 结直肠癌细胞同期放化疗抵抗关键调控基因的筛选[D]. 昆明: 昆明医科大学, 2015. [11] Bridges M C,Daulagala A C,Kourtidis A. LNCcation:lncRNA localization and function[J]. J Cell Biol,2021,220(2):e202009045. [12] Zheng J,Zhao Z,Ren H,et al. LncRNA HCG11 facilitates nasopharyngeal carcinoma progression through regulating miRNA-490-3p/MAP3K9 Axis[J]. Front Oncol,2022,12:872033. doi: 10.3389/fonc.2022.872033 [13] Guo C,Ma X,He H,et al. Expression of ANCR in nasopharyngeal carcinoma patients and its clinical significance[J]. Medicine (Baltimore),2021,100(33):e26834. [14] Guo Z,Wang Y H,Xu H,et al. LncRNA linc00312 suppresses radiotherapy resistance by targeting DNA-PKcs and impairing DNA damage repair in nasopharyngeal carcinoma[J]. Cell Death Dis,2021,12(1):69. doi: 10.1038/s41419-020-03302-2 [15] Xiao J,He X. Involvement of non-coding RNAs in chemo- and radioresistance of nasopharyngeal carcinoma[J]. Cancer Manag Res,2021,13:8781-8794. doi: 10.2147/CMAR.S336265 [16] Lee A,Tung S Y,Ng W T,et al. A multicenter,phase 3,randomized trial of concurrent chemoradiotherapy plus adjuvant chemotherapy versus radiotherapy alone in patients with regionally advanced nasopharyngeal carcinoma:10-year outcomes for efficacy and toxicity[J]. Cancer,2017,123(21):4147-4157. doi: 10.1002/cncr.30850 [17] Li G,Liu Y,Liu C,et al. Genome-wide analyses of long noncoding RNA expression profiles correlated with radioresistance in nasopharyngeal carcinoma via next-generation deep sequencing[J]. BMC Cancer,2016,16:719. doi: 10.1186/s12885-016-2755-6 [18] Niu Z,Wang F,Lv S,et al. HNRNPU-AS1 regulates cell proliferation and apoptosis via the microRNA 205-5p/AXIN2 axis and Wnt/beta-catenin signaling pathway in cervical cancer[J]. Mol Cell Biol,2021,41(10):e11521. [19] Zhang L,Zhao Y,Guan H,et al. HnRNPU-AS1 inhibits the proliferation,migration and invasion of HCC cells and induces autophagy through miR-556-3p/ miR-580-3p/SOCS6 axis[J]. Cancer Biomark,2022,34(3):443-457. doi: 10.3233/CBM-210261