留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

巨噬细胞极化与部分血栓性疾病的关系

申屠昊鹏 杨菁 葛卫清 周涛 宋恩

申屠昊鹏, 杨菁, 葛卫清, 周涛, 宋恩. 巨噬细胞极化与部分血栓性疾病的关系[J]. 昆明医科大学学报.
引用本文: 申屠昊鹏, 杨菁, 葛卫清, 周涛, 宋恩. 巨噬细胞极化与部分血栓性疾病的关系[J]. 昆明医科大学学报.
Haopeng SHENTU, Jing YANG, WeiQing GE, Tao ZHOU, En SONG. Macrophage Polarization and Thrombotic Diseases[J]. Journal of Kunming Medical University.
Citation: Haopeng SHENTU, Jing YANG, WeiQing GE, Tao ZHOU, En SONG. Macrophage Polarization and Thrombotic Diseases[J]. Journal of Kunming Medical University.

巨噬细胞极化与部分血栓性疾病的关系

基金项目: 国家自然科学基金(82160101)
详细信息
    作者简介:

    申屠昊鹏(1996~),男,浙江东阳人,在读硕士研究生,主要从事血栓疾病临床及研究工作

    通讯作者:

    宋恩,E-mail:641634233@qq.com

  • 中图分类号: R364.5

Macrophage Polarization and Thrombotic Diseases

More Information
    Corresponding author: 宋恩,男,博士,副主任医师,硕士研究生导师,昆明医科大学第一附属医院运动医学科,主要从事脊柱创伤及退行性疾病的脊柱微创手术治疗,肩、膝关节病损的微创关节镜手术治疗。欧洲神经及脊柱外科协会(EANS)会员;国际神经内镜联盟(IFNE)会员;英国体育与运动医学学会杂志(BJSM)青年编委;中国医师协会骨科医师分会脊柱微创修复与重建学组委员;中国康复医学会骨伤康复专业委员会脊柱疼痛学组副主任委员;中国中西医结合骨伤科学会脊柱微创专家委员会委员;中国中西医结合骨伤科学会椎间盘退变与修复专家委员会委员;中国西部运动医学关节镜联盟会委员;首届QCC国际大赛金奖;昆明医科大学第一附属医院全英文教学比赛奖项(涵盖一等奖、二等奖、三等奖)。昆明医科大学“三育人”优秀教师。2017、2018年度昆明医科大学第一附属医院 “先进个人”。主持国家自然科学基金项目1项,云南省应用基础研究计划项目面上项目1项,昆医联合专项一项,发表论文9篇,主编专著1本,参编专著2本,执笔全国专家共识1篇。实用性新型专利4项。“兴滇英才”青年人才称号。云南省医学“后备人才”。
  • 摘要: 血栓性疾病是指因血液在血管内异常凝固形成血栓,从而引起一系列临床症状的疾病总称,包括下肢深静脉血栓形成、脑卒中、动脉粥样硬化、糖尿病等疾病。血栓形成是一个复杂的、循序渐进的过程,大致可概括为血管内皮损伤暴露、内源性凝血系统启动、血小板黏附聚集、纤维蛋白网生成、血细胞淤积等过程。在此过程中,巨噬细胞发挥了重要作用。它们通过参与局部的炎症反应,调控血栓的形成和消退。巨噬细胞极化是近年来的研究热点,它主要指巨噬细胞在不同环境刺激下发生形态和功能上的变化。巨噬细胞极化可分为经典型(M1型)、替代型(M2型)以及一些特殊的极化状态。巨噬细胞极化状态的转变在免疫应答、病原体感染、肿瘤免疫和自身免疫等过程中具有重要作用。综述巨噬细胞极化在血栓性疾病中的调控关系,为血栓性疾病的治疗提供新的方向。
  • 图  1  参与巨噬细胞极化部分物质流程图

    Figure  1.  Flowchart of the involvement of substances in macrophage polarization

    表  1  部分疾病巨噬细胞调控及相关通路

    Table  1.   Regulation of macrophages and rRelated Pathways in certain diseases

    疾病 相关通路 巨噬细胞调控
    动脉粥样硬化 NF-κB相关通路,
    Notch 信号通路,
    PI3K/Akt通路,
    KLF-4-Ch25h/LXR通路,
    STAT相关通路等
    M1:LPS,IFN- γ,粒细胞-巨噬细胞集落刺激因子(GM-CSF),C反应蛋白CRP,螺旋B表面肽(HBSP)(*)等 M2: IL-4、10、13,蛋白激酶A( PKA),高密度脂蛋( HDL),HBSP,KLF-4等
    高血压 STAT相关通路,
    TLR4/NF-κB通路等
    M1:骨桥蛋白(*),缺氧诱导因子-1(HIF-1),血红素加氧酶(HO)(*) 等 M2:A型清道夫受体(SR-A)、血管紧张素II(AngII)、骨桥蛋白、HO等
    糖尿病 JNK通路,
    STAT相关通路,
    miR-330-5p /Tim-3 通路,
    Wnt 信号通路等
    M1:TNF-α,IL-6 NO,MiR-657,MCP-1,活性维生素D(*)
    M2: miR-330-5p等
    肿瘤或癌症 AMPK相关通路,
    Wnt /β-catenin信号通路,
    IL-6 / STAT3通路等
    M1:IFN-γ,胎盘生长因子(PLGF),铜绿假单胞菌( 绿脓杆菌) 甘露糖敏感血凝菌毛株(PA-MSHA)等
    M2:Wnt配体,miR-21-5p, lncRNA cox-2(*)
      (*)为负向调控,未特别说明即为正向调控。
    下载: 导出CSV
  • [1] Kadri A N,Alrawashdeh R,Soufi M K,et al. Mechanical support in high-risk pulmonary embolism: Review article[J]. Journal of Clinical Medicine,2024,13(9):2468. doi: 10.3390/jcm13092468
    [2] Liang X,Xiu C,Liu M,et al. Platelet-neutrophil interaction aggravates vascular inflammation and promotes the progression of atherosclerosis by activating the TLR4/NF-κB pathway[J]. Journal of Cellular Biochemistry,2019,120(4):5612-5619. doi: 10.1002/jcb.27844
    [3] 傲然·马合沙提,哈力·哈布力汗,杨毅,等. D-二聚体联合其他指标检测对脊柱退行性变术后下肢深静脉血栓形成的预测价值[J]. 实用骨科杂志,2021,27(9):774-778.
    [4] Taylor J B,Malone-Povolny M J,Merricks E P,et al. Mechanisms of foreign body response mitigation by nitric oxide release[J]. International Journal of Molecular Sciences,2022,23(19):11635. doi: 10.3390/ijms231911635
    [5] Zhi L,Feng W,Liang J,et al. The effect of common variants in SLC44A2 on the contribution to the risk of deep vein thrombosis after orthopedic surgery[J]. Atheroscler Thromb,2021,28(3):293-303 doi: 10.5551/jat.56333
    [6] Poredoš P,Spirkoska A,Ježovnik MK. In patients with superficial vein thrombosis the inflammatory response is increased and related to the recanalization rate[J]. Archives of Medical Science : AMS,2019,15(2):393-401. doi: 10.5114/aoms.2019.83292
    [7] Yao Y,Li J,Zhou Y,et al. Macrophage/microglia polarization for the treatment of diabetic retinopathy[J]. Frontiers in Endocrinology,2023,14:1276225. doi: 10.3389/fendo.2023.1276225
    [8] Yk C,Xm J,Jp G. Recombinant human granulocyte colony-stimulating factor enhanced the resolution of venous thrombi[J]. Journal of Vascular Surgery,2008,47(5):1058-1065. doi: 10.1016/j.jvs.2007.12.042
    [9] Link V M,Duttke S H,Chun H B,et al. Analysis of genetically diverse macrophages reveals local and domain-wide mechanisms that control transcription factor binding and function[J]. Cell,2018,173(7): 1796-1809. e17.
    [10] 吴嘉麒,刘鑫,王宁,等. 抑制内质网钙离子释放在诱导巨噬细胞自噬及逆转LPS耐受中的作用[J]. 免疫学杂志,2020(1):11-16.
    [11] Charkes N D,Dugan M A,Malmud L S,et al. Letter: Labelled leucocytes in thrombi[J]. Lancet (London,England),1974,2(7880):600.
    [12] Huang M,Hu J,Chen Y,et al. Mesencephalic astrocyte-derived neurotrophic factor inhibits cervical cancer progression via regulating macrophage phenotype[J]. Molecular Biology Reports,2024,51(1):654. doi: 10.1007/s11033-024-09602-6
    [13] Zhao Y,Peng F,He J,et al. SOCS1 peptidomimetic alleviates glomerular inflammation in MsPGN by inhibiting macrophage M1 polarization[J]. Inflammation,2023,46(6):2402-2414. doi: 10.1007/s10753-023-01886-3
    [14] Ciesielska A,Matyjek M,Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling[J]. Cellular and Molecular Life Sciences: CMLS,2021,78(4):1233-1261. doi: 10.1007/s00018-020-03656-y
    [15] 谢栩硕,朱汉平,卓超,等. 柴胡颗粒对发热大鼠体温、M1/M2型巨噬细胞极化及TLR4/NF-κB蛋白的作用机制[J]. 中国老年学杂志,2024,44(9):2167-2172. doi: 10.3969/j.issn.1005-9202.2024.09.031
    [16] Kotlyarov S,Kotlyarova A. Participation of krüppel-like factors in atherogenesis[J]. Metabolites,2023,13(3):448. doi: 10.3390/metabo13030448
    [17] Li J,Wang R,Shi W,et al. Epigenetic regulation in radiation-induced pulmonary fibrosis[J]. International Journal of Radiation Biology,2023,99(3):384-395. doi: 10.1080/09553002.2022.2089365
    [18] Li T,Li L,Peng R,et al. Abrocitinib attenuates microglia-mediated neuroinflammation after traumatic brain injury via inhibiting the JAK1/STAT1/NF-κB pathway[J]. Cells,2022,11(22):3588. doi: 10.3390/cells11223588
    [19] Zhang Q,Mao Z,Sun J. NF-κB inhibitor,BAY11-7082,suppresses M2 tumor-associated macrophage induced EMT potential via miR-30a/NF-κB/Snail signaling in bladder cancer cells[J]. Gene,2019,710:91-97. doi: 10.1016/j.gene.2019.04.039
    [20] Chen J,Chang R. Association of TGF-β canonical signaling-related core genes with aortic aneurysms and aortic dissections[J]. Frontiers in Pharmacology,2022,13:888563. doi: 10.3389/fphar.2022.888563
    [21] Wu W,Wang X,Yu X,et al. Smad3 signatures in renal inflammation and fibrosis[J]. International Journal of Biological Sciences,2022,18(7):2795-2806. doi: 10.7150/ijbs.71595
    [22] Marty P,Chatelain B,Lihoreau T,et al. Halofuginone regulates keloid fibroblast fibrotic response to TGF-β induction[J]. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie,2021,135:111182.
    [23] Guha Ray A,Odum O P,Wiseman D,et al. The diverse roles of macrophages in metabolic inflammation and its resolution[J]. Frontiers in Cell and Developmental Biology,2023,11:1147434. doi: 10.3389/fcell.2023.1147434
    [24] Eni-Aganga I,Lanaghan Z M,Ismail F,et al. KLF6 activates Sp1-mediated prolidase transcription during TGF-β1 signaling[J]. The Journal of Biological Chemistry,2024,300(2):105605. doi: 10.1016/j.jbc.2023.105605
    [25] Wang Q,Ni S,Ling L,et al. Ginkgolide B blocks vascular remodeling after vascular injury via regulating Tgfβ1/Smad signaling pathway[J]. Cardiovascular Therapeutics,2023,2023:8848808.
    [26] Gallenstein N,Tichy L,Weigand M A,et al. Notch signaling in acute inflammation and sepsis[J]. International Journal of Molecular Sciences,2023,24(4):3458. doi: 10.3390/ijms24043458
    [27] Zhang Y,Liu J,Jia W,et al. AGEs/RAGE blockade downregulates Endothenin-1 (ET-1),mitigating human umbilical vein endothelial cells (HUVEC) injury in deep vein thrombosis (DVT)[J]. Bioengineered,2021,12(1):1360-1368. doi: 10.1080/21655979.2021.1917980
    [28] Hu F D,Miao Y,Yu B,et al. Analysis of immune cells and risk factors related to lower limb deep vein thrombosis in patients with cerebral infarction[J]. American Journal of Clinical and Experimental Immunology,2024,13(3):133-139. doi: 10.62347/DRPN1199
    [29] Gkana A,Papadopoulou A,Mermiri M,et al. Contemporary biomarkers in pulmonary embolism diagnosis: Moving beyond D-Dimers[J]. Journal of Personalized Medicine,2022,12(10):1604. doi: 10.3390/jpm12101604
    [30] Yao M,Fang C,Wang Z,et al. miR-328-3p targets TLR2 to ameliorate oxygen-glucose deprivation injury and neutrophil extracellular trap formation in HUVECs via inhibition of the NF-κB signaling pathway[J]. PloS One,2024,19(2):e0299382. doi: 10.1371/journal.pone.0299382
    [31] Funes S C,Rios M,Escobar-Vera J,et al. Implications of macrophage polarization in autoimmunity[J]. Immunology,2018,154(2):186-195. doi: 10.1111/imm.12910
    [32] Locati M,Curtale G,Mantovani A. Diversity,mechanisms,and significance of macrophage plasticity[J]. Annual Review of Pathology,2020,15:123-147. doi: 10.1146/annurev-pathmechdis-012418-012718
    [33] Barrett T J. Macrophages in atherosclerosis regression[J]. Arteriosclerosis,Thrombosis,and Vascular Biology,2020,40(1):20-33. doi: 10.1161/ATVBAHA.119.312802
    [34] Cutolo M,Campitiello R,Gotelli E,et al. The role of M1/M2 macrophage polarization in rheumatoid arthritis synovitis[J]. Frontiers in Immunology,2022,13:867260. doi: 10.3389/fimmu.2022.867260
    [35] Bulut G B,Alencar G F,Owsiany K M,et al. KLF4 (kruppel-like factor 4)-dependent perivascular plasticity contributes to adipose tissue inflammation[J]. Arteriosclerosis,Thrombosis,and Vascular Biology,2021,41(1):284-301. doi: 10.1161/ATVBAHA.120.314703
    [36] Taddeo J R,Wilson N,Kowal A,et al. PPARα exacerbates salmonella typhimurium infection by modulating the immunometabolism and macrophage polarization[J]. Gut Microbes,2024,16(1):2419567. doi: 10.1080/19490976.2024.2419567
    [37] Shirai T,Nazarewicz R R,Wallis B B,et al. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease[J]. The Journal of Experimental Medicine,2016,213(3):337-354. doi: 10.1084/jem.20150900
    [38] Aarup A,Pedersen T X,Junker N,et al. Hypoxia-inducible factor-1α expression in macrophages promotes development of atherosclerosis[J]. Arteriosclerosis,Thrombosis,and Vascular Biology,2016,36(9):1782-1790. doi: 10.1161/ATVBAHA.116.307830
    [39] Bekkering S,van den Munckhof I,Nielen T,et al. Innate immune cell activation and epigenetic remodeling in symptomatic and asymptomatic atherosclerosis in humans in vivo[J]. Atherosclerosis,2016,254:228-236. doi: 10.1016/j.atherosclerosis.2016.10.019
    [40] Tomas L,Edsfeldt A,Mollet I G,et al. Altered metabolism distinguishes high-risk from stable carotid atherosclerotic plaques[J]. European Heart Journal,2018,39(24):2301-2310. doi: 10.1093/eurheartj/ehy124
    [41] Yao M,Ma J,Wu D,et al. Neutrophil extracellular traps mediate deep vein thrombosis: From mechanism to therapy[J]. Frontiers in Immunology,2023,14:1198952. doi: 10.3389/fimmu.2023.1198952
    [42] Han Z,Liu Q,Li H,et al. The role of monocytes in thrombotic diseases: A review[J]. Frontiers in Cardiovascular Medicine,2023,10:1113827. doi: 10.3389/fcvm.2023.1113827
    [43] 陈云飞. 人脂肪间充质干细胞来源的外泌体通过抑制小胶质细胞/巨噬细胞活化促进创伤性脑损伤大鼠神经功能的恢复[D]. 北京: 北京协和医学院,2021.
    [44] 柳正,王朝晖,周春亭. MFGE8在缺血性脑损伤中表达及对巨噬细胞极化的调控作用[J]. 中风与神经疾病杂志,2021(10):1065-1069.
    [45] Ototake Y,Yamaguchi Y,Asami M,et al. Downregulated IRF8 in monocytes and macrophages of patients with systemic sclerosis may aggravate the fibrotic phenotype[J]. The Journal of Investigative Dermatology,2021,141(8):1954-1963. doi: 10.1016/j.jid.2021.02.015
    [46] Chen X,Tang J,Shuai W,et al. Macrophage polarization and its role in the pathogenesis of acute lung injury/acute respiratory distress syndrome[J]. Inflammation Research: Official Journal of the European Histamine Research Society,2020,69(9):883-895.
    [47] 马丽莎. Study on macrophage polarization pathway and related diseases[J]. Advances in Clinical Medicine,2024,14(3):276-283.
    [48] Liu Y,Liu X,Hua W,et al. Berberine inhibits macrophage M1 polarization via AKT1/SOCS1/NF-κB signaling pathway to protect against DSS-induced colitis[J]. International Immunopharmacology,2018,57:121-131. doi: 10.1016/j.intimp.2018.01.049
    [49] Zhou Z,Deng T,Tao M,et al. Snail-inspired AFG/GelMA hydrogel accelerates diabetic wound healing via inflammatory cytokines suppression and macrophage polarization[J]. Biomaterials,2023,299:122141. doi: 10.1016/j.biomaterials.2023.122141
  • [1] 林彬, 张铠, 王杰, 陈新民.  急性下肢深静脉血栓患者置管溶栓前后D-D、F1+2、P-selectin变化及意义, 昆明医科大学学报. 2024, 45(1): 93-99. doi: 10.12259/j.issn.2095-610X.S20240116
    [2] 王莉, 尚亚娟, 高亭, 范惠, 刘振锋.  基于web of science的下肢深静脉血栓研究趋势的可视化分析, 昆明医科大学学报. 2024, 46(): 1-9.
    [3] 张振潇, 张晶晶, 廖芸, 李丹丹, 李恒, 刘龙丁.  HSV-1突变株M6感染人支气管上皮细胞后对巨噬细胞介导的免疫反应的影响, 昆明医科大学学报. 2024, 45(7): 6-13. doi: 10.12259/j.issn.2095-610X.S20240702
    [4] 常家烁, 查正勇, 邹广思, 黄贤丽, 苏秋燕, 高正乾.  不同下腔静脉滤器肾静脉上置入在深静脉血栓腔内治疗中的应用, 昆明医科大学学报. 2024, 46(): 1-8.
    [5] 马彬斌, 王宁, 刘建平, 张开全, 高永丽, 李高辉, 张琛.  下肢软组织创伤并发深静脉血栓易患风险因素分析, 昆明医科大学学报. 2023, 44(8): 110-116. doi: 10.12259/j.issn.2095-610X.S20230817
    [6] 张梁, 王保全, 雷喜锋, 王旭, 柯阳, 张玮.  M2巨噬细胞来源的外泌体miR-1246调控胃癌细胞的生长和侵袭, 昆明医科大学学报. 2023, 44(7): 69-77. doi: 10.12259/j.issn.2095-610X.S20230724
    [7] 沈居丽, 贾惠芳, 郜玫, 段金梅, 刘萍, 孙祖燕, 林惠仙.  基于风险评估的集束化护理在预防全子宫切除术后下肢深静脉血栓中的应用, 昆明医科大学学报. 2022, 43(2): 160-165. doi: 10.12259/j.issn.2095-610X.S20220212
    [8] 赵维佳, 李红宾, 陈宗翰.  米卡芬净对光滑假丝酵母菌在巨噬细胞内活性的影响, 昆明医科大学学报. 2022, 43(1): 14-19. doi: 10.12259/j.issn.2095-610X.S20220142
    [9] 吴婕, 刘珺, 张燕, 任莉, 党彦丽.  组蛋白和TLRs在静脉血栓栓塞性疾病中的作用机制, 昆明医科大学学报. 2021, 42(5): 165-169. doi: 10.12259/j.issn.2095-610X.S20210530
    [10] 蔡啸, 扆雪涛, 姚菁青, 戴昕妤, 汤忠泉, 欧婷, 赵晓敏, 李云涛.  人骨髓间充质干细胞分泌的外泌体调控恶性胶质瘤相关巨噬细胞的极化, 昆明医科大学学报. 2021, 42(1): 38-45. doi: 10.12259/j.issn.2095-610X.S20210101
    [11] 袁英, 李渊渊, 郭方圆, 杨宏英.  D-二聚体监测及低分子肝素钠的预防在妇科术后静脉血栓性疾病的应用, 昆明医科大学学报. 2017, 38(04): 109-112.
    [12] 张小超, 沈志强, 杨仁华, 唐传劲, 白林英, 何波, 陈鹏, 姚荣成.  Corilagin对OX-LDL损伤的巨噬细胞中CRP表达的影响, 昆明医科大学学报. 2017, 38(08): 1-5.
    [13] 杨蓉, 杨莹.  巨噬细胞中oxLDL对TLR4-Src信号通路激活的调控, 昆明医科大学学报. 2017, 38(05): 44-49.
    [14] 刘德洪, 邵举薇, 向述天, 刘晨, 王鹏, 李颖文.  磁共振BRAVO序列与TRICKS序列在诊断脑静脉血栓的应用, 昆明医科大学学报. 2016, 37(11): 121-125.
    [15] 董忠礼.  单核巨噬细胞促进静脉血栓机化再通的机制及研究进展, 昆明医科大学学报. 2016, 37(04): -.
    [16] 谢元润.  三种胶质瘤细胞株U87、U251及T98G体外趋化血液单核细胞的实验研究, 昆明医科大学学报. 2016, 37(04): -.
    [17] 耿玉六.  置管溶栓在下肢深静脉血栓形成治疗与传统治疗的比较, 昆明医科大学学报. 2015, 36(11): -.
    [18] 史兆坤.  单核细胞趋化蛋白-1趋化巨噬细胞迁移与侵袭的体外实验研究, 昆明医科大学学报. 2014, 35(04): -.
    [19] 刘军.  全髋关节置换术后深静脉血栓形成的危险因素分析, 昆明医科大学学报. 2012, 33(07): -.
    [20] 卜锐.  下肢深静脉联合腹部大血管彩超诊断深静脉血栓的价值, 昆明医科大学学报. 2012, 33(08): -.
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  8
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-09

目录

    /

    返回文章
    返回