Concordance and Correlation Analysis of Mismatch Repair and Microsatellite Status in 412 Cases of Colorectal Cancer in Yunnan Province
-
摘要:
目的 探讨云南地区结直肠癌(colorectal cancer,CRC)错配修复(mismatch repair,MMR)蛋白与微卫星不稳定(microsatellite instability,MSI)检测的一致性及生物学特征的相似性,并初步筛选可能导致两种检测不一致的独立相关因素。 方法 回顾性收集2021年1月至2024年12月期间昆明医科大学第一附属医院就诊的412例云南本土CRC患者初诊时的病历资料,采用Kappa检验评估MMR与MSI检测的一致性,采用百分比表示MMR与MSI状态的匹配程度。通过卡方检验进行单因素分析、Bonferroni法进行多重比较校正、Logistic回归模型进行多因素分析,进一步筛选两种检测不一致的独立相关因素。 结果 (1)一致性:在412例云南地区CRC患者中,错配修复缺失(deficent MMR,dMMR)和高度微卫星不稳定(microsatellite instability-high,MSI-H)发生率分别为12.1%和8.5%。以MSI检测为金标准,MMR检测的敏感性和特异度为82.9%和94.4%,阳性预测值和阴性预测值为58.0%和98.3%,两种检测的一致率为93.5%。Kappa检验显示,两种检测在总体人群、汉族患者及少数民族患者中均具有较高的一致性(总体:Kappa=0.647>0.6,P < 0.001;汉族:Kappa=0.621>0.6,P < 0.001;少数民族:Kappa=0.808>0.8,P < 0.001);(2)MMR蛋白缺失情况:50例dMMR型患者中最常发生的蛋白缺失类型为MLH1-PMS2联合缺失(42.0%),且dMMR型患者中MSI-H占比为58.0%,其中MSI-H占比最高的蛋白缺失类型为MSH2-MSH6联合缺失(85.7%);(3)生物学特征相似性:息肉病史、肿瘤部位、分化程度、M分期均与MSI和MMR状态独立相关,且MSI状态兼与年龄、肿瘤家族史、肿瘤大小独立相关(P < 0.05);(4)MMR与MSI检测是否一致的独立相关因素:息肉病史、肿瘤部位与两种检测是否一致独立相关;而肿瘤部位、分化程度与dMMR中MSI检测是否一致独立相关(P < 0.05)。 结论 云南地区CRC中MMR与MSI检测具有较高的一致性和生物学特征相似性。MSI-H型CRC主要见于年龄<50岁、伴肿瘤家族史或息肉病史、肿瘤直径≥5 cm、右半结肠癌、低分化癌、未发生远处转移的患者中。临床中应注意进一步核实MMR与MSI检测结果的不一致:总体上,伴息肉病史、非直肠部位的CRC更容易发生两种检测的不一致;而在dMMR型CRC中,中高分化癌、左半结肠癌的患者更容易发生两种检测的不一致。 Abstract:Objective To investigate the concordance between mismatch repair (MMR) protein and microsatellite instability (MSI) detection in colorectal cancer (CRC) in Yunnan Province, the similarity of their biological characteristics, and to preliminarily screen independent factors that may lead to discordance between the two detection methods. Methods A retrospective collection of medical records from 412 native Yunnan CRC patients who visited the First Affiliated Hospital of Kunming Medical University between January 2021 and December 2024 was conducted. Kappa analysis was employed to assess the concordance between MMR and MSI testing, with percentags representing the matching degree between MMR and MSI status. Chi-square test was used for univariate analysis, Bonferroni correction for multiple comparisons, and logistic regression models for multivariate analysis to further screen independent factors associated with discordance between these two detection methods. Results (1) Consistency: Among 412 colorectal cancer patients in Yunnan Province, the incidence of deficient MMR (dMMR) and microsatellite instability-high (MSI-H) were 12.1% and 8.5%, respectively. Using MSI testing as the gold standard, the sensitivity and specificity of MMR testing were 82.9% and 94.4%, respectively, with positive and negative predictive values of 58.0% and 98.3%, respectively. The overall concordance rate between the two tests was 93.5%. Kappa analysis demonstrated high concordance between the two assays across the general population, Han Chinese patients, and ethnic minority patients (general population: Kappa=0.647 > 0.6, P < 0.001; Han Chinese patients: Kappa=0.621 > 0.6, P < 0.001; ethnic minority patients: Kappa=0.808 > 0.8, P < 0.001). (2) MMR protein deficiency patterns: Among 50 dMMR patients, the most prevalent deficiency type was combined MLH1-PMS2 deletion (42.0%), and MSI-H accounted for 58.0% in dMMR patients, of which MSH2-MSH6 combined deficiency showed the highest proportion of MSI-H (85.7%). (3) Biological characteristic similarities: History of polyposis, tumour location, differentiation degree, and M stage were all independently associated with MSI and MMR status. Additionally, MSI status was independently associated with age, family history of cancer, and tumour size (P < 0.05). (4) Independent factors associated with MMR-MSI test concordance: History of polyposis and tumour location were independently associated with concordance between the two tests; while tumour location and differentiation degree were independently associated with concordance of MSI detection in dMMR (P < 0.05). Conclusion In Yunnan Province, MMR and MSI testing for colorectal cancer (CRC) demonstrate high concordance and biological characteristic similarity. MSI-H CRC is predominantly found in patients with age <50 years, family history of tumors or history of polyps, tumor diameter ≥5 cm, right-sided colon cancer, poorly differentiated carcinoma, and without distant metastases. Clinically, attention should be paid to further verification of discordant results between MMR and MSI detection: overall, CRC with history of polyps and non-rectal location is more prone to discordance between the two detection methods; while in dMMR type CRC, patients with moderately to well-differentiated carcinoma and left-sided colon cancer are more prone to discordance between the two detection methods. -
Key words:
- Colorectal cancer /
- Mismatch repair /
- Microsatellite instability /
- Concordance /
- Correlation
-
表 1 MMR与MSI检测的一致性分析
Table 1. Concordance analysis of MMR and MSI detection
MSI状态 MMR状态 总数(n) Kappa P dMMR pMMR 总患者 MSI-H 29 6 35 0.647 <0.001 MSS 21 356 377 总数(n) 50 362 412 汉族 MSI-H 24 5 29 0.621 <0.001 MSS 20 318 338 总数(n) 44 323 367 少数民族 MSI-H 5 1 6 0.808 <0.001 MSS 1 38 39 总数(n) 6 39 45 表 2 MMR蛋白的表达及匹配情况
Table 2. Expression and matching status of MMR proteins
MMR蛋白 缺失例数(n) 缺失率(%) MSI-H(n) MSS(n) 匹配度(%) MLH1 PMS2 MSH2 MSH6 (+) (+) (+) (+) 0 0 6 356 98.3a (-) (+) (+) (+) 5 10.0 1 4 20.0 (+) (-) (+) (+) 12 24.0 6 6 50.0 (+) (+) (-) (+) 1 2.0 0 1 0 (+) (+) (+) (-) 1 2.0 0 1 0 (-) (-) (+) (+) 21 42.0 14 7 66.7 (+) (+) (-) (-) 7 14.0 6 1 85.7 (-) (+) (-) (+) 2 4.0 2 0 100 (+) (-) (-) (+) 1 2.0 0 1 0 单个蛋白表达缺失 19 38.0 7 12 36.8 多个蛋白表达缺失 31 62.0 22 9 71.0 合计(dMMR) 50 100 29 21 58.0 apMMR的匹配度=MSS/pMMR例数,其余dMMR的匹配度=MSI-H/缺失例数。 表 3 MMR/MSI状态的单因素分析
Table 3. Univariate analysis of MMR/MSI status
观察指标 MMR状态 χ2 P MSI状态 χ2 P dMMR
(n=50)pMMR
(n=362)MSI-H
(n=35)MSS
(n=377)性别 男 24(48.0) 194(53.6) 0.551 0.458 18(51.4) 200(53.1) 0.034 0.854 女 26(52.0) 168(46.4) 17(48.6) 177(46.9) 年龄(岁) <50 15(30.0) 70(19.3) 3.050 0.081 12(34.3) 73(19.4) 4.355 0.037* ≥50 35(70.0) 292(80.7) 23(65.7) 304(80.6) 民族 汉族 44(88.0) 323(89.2) 0.068 0.809 29(82.9) 338(89.7) 0.903# 0.342 少数民族 6(12.0) 39(10.8) 6(17.1) 39(10.3) 肿瘤家族史 有 14(28.0) 85(23.5) 0.492 0.483 15(42.9) 84(22.3) 7.428 0.006* 无 36(72.0) 277(76.5) 20(57.1) 293(77.7) 息肉
病史有 25(50.0) 114(31.5) 6.732 0.009* 17(48.6) 112(29.7) 5.299 0.021* 无 25(50.0) 248(68.5) 18(51.4) 265(70.3) 肿瘤
部位①右半结肠 27(54.0) 59(16.3) 39.858 0.001*
①a
②b
③b24(68.6) 62(16.5) 53.195 0.001*
①a
②b
③b②左半结肠 13(26.0) 113(31.2) 6(17.1) 120(31.8) ③直肠 10(20.0) 190(52.5) 5(14.3) 195(51.7) 肿瘤直径
(cm)≥5 19(38.0) 89(24.6) 4.087 0.043* 15(42.9) 93(24.7) 5.478 0.019* <5 31(62.0) 273(75.4) 20(57.1) 284(75.3) 分化
程度低分化 17(34.0) 62(17.1) 8.070 0.004* 15(42.9) 64(17.0) 13.842 0.001* 中高分化 33(66.0) 300(82.9) 20(57.1) 313(83.0) 组织学类型 非特殊类型腺癌 41(82.0) 340(93.9) 7.343# 0.007* 28(80.0) 353(93.6) 6.709# 0.010* 黏液腺癌+印戒癌 9(18.0) 22(6.1) 7(20.0) 24(6.4) T分期 T1+T2 14(28.0) 84(23.2) 0.557 0.455 7(20.0) 91(24.1) 0.302 0.582 T3+T4 36(72.0) 278(76.8) 28(80.0) 286(75.9) N分期 N0 25(50.0) 139(38.4) 2.468 0.116 20(57.1) 144(38.2) 4.798 0.028* N1+N2 25(50.0) 223(61.6) 15(42.9) 233(61.8) M分期 M0 39(78.0) 224(61.9) 4.946 0.026* 29(82.9) 234(62.1) 5.995 0.014* M1 11(22.0) 138(38.1) 6(17.1) 143(37.9) 分期 I+II 22(44.0) 116(32.0) 2.819 0.093 18(51.4) 120(31.8) 5.522 0.019* III+IV 28(56.0) 246(68.0) 17(48.6) 257(68.2) #采用连续性校正卡方检验计算χ2值和P值;*P < 0.05;Bonferroni校正多重比较结果:①a、②b、③b表示①与②、③之间差异有统计学意义。 表 4 MMR/MSI状态的多因素Logistic回归分析
Table 4. Multivariate logistic regression analysis of MMR/MSI status
临床病理参数 dMMR MSI-H OR 95%CI P OR 95%CI P 年龄≥50岁 0.369 0.138 ~ 0.987 0.047* 不伴肿瘤家族史 0.243 0.096 ~ 0.611 0.003* 不伴息肉病史 0.320 0.159 ~ 0.644 0.001* 0.387 0.165 ~ 0.911 0.030* 非右半结肠癌 0.272 0.117 ~ 0.631 0.002* 0.196 0.067 ~ 0.569 0.003* 肿瘤直径<5 cm 0.752 0.351 ~ 1.612 0.465 0.394 0.187 ~ 0.828 0.014* 中高分化 0.306 0.154 ~ 0.606 <0.001* 0.307 0.113 ~ 0.831 0.020* 非特殊类型腺癌 0.418 0.147 ~ 1.190 0.102 0.601 0.181 ~ 1.998 0.407 N0 2.836 0.372 ~ 21.600 0.314 M0 2.326 1.093 ~ 4.950 0.028* 5.961 1.622 ~ 21.899 0.007* 分期:III+IV 0.727 0.080 ~ 6.587 0.777 *P < 0.05,提示参数为独立相关因素。 表 5 MMR与MSI检测是否一致的单因素分析
Table 5. Univariate analysis of MMR and MSI detection consistency
观察指标 两种检测是否一致 χ2 P dMMR中MSI状态 χ2 P 一致组
(n=385)不一致组
(n=27)MSI-H
(n=29)MSS
(n=21)性别 男 204(53.0) 14(51.9) 0.013 0.909 14(48.3) 10(47.6) 0.002 0.963 女 181(47.0) 13(48.1) 15(51.7) 11(52.4) 年龄(岁) <50 80(20.8) 5(18.5) 0.709 0.779 11(37.9) 4(19.0) 2.068 0.150 ≥50 305(79.2) 22(81.5) 18(62.1) 17(81.0) 民族 汉族 342(88.8) 25(92.6) 0.082# 0.774 24(82.8) 20(95.2) 0.909# 0.368 少数民族 43(11.2) 2(7.4) 5(17.2) 1(4.8) 肿瘤家族史 有 92(23.9) 7(25.9) 0.057 0.811 11(37.9) 3(14.3) 3.378 0.066 无 293(76.1) 20(74.1) 18(62.1) 18(85.7) 息肉
病史有 123(31.9) 16(59.3) 8.418 0.004* 13(44.8) 12(57.1) 0.739 0.390 无 262(68.1) 11(40.7) 16(55.2) 9(42.9) 肿瘤
部位①右半结肠 77(20.0) 9(33.3) 6.169 0.046*
①a
②a
③b21(72.4) 6(28.6) 9.623 0.008*
①a
②b
③ab②左半结肠 115(29.9) 11(40.7) 4(13.8) 9(42.8) ③直肠 193(50.1) 7(26.0) 4(13.8) 6(28.6) 肿瘤直径
(cm)≥5 100(26.0) 8(29.6) 0.174 0.676 13(44.8) 6(28.6) 1.366 0.242 <5 285(74.0) 19(70.4) 16(55.2) 15(71.4) 分化
程度低分化 75(19.5) 4(14.8) 0.354 0.552 14(48.3) 3(14.3) 6.271 0.012* 中高分化 310(80.5) 23(85.2) 15(51.7) 18(85.7) 组织学类型 非特殊类型腺癌 356(92.5) 25(92.6) 0.001# 0.999 22(75.9) 19(90.5) 0.911# 0.340 黏液腺癌+印戒癌 29(7.5) 2(7.4) 7(24.1) 2(9.5) T分期 T1+T2 91(23.6) 7(26.0) 0.073 0.787 22(75.9) 7(33.3) 9.043 0.003* T3+T4 294(76.4) 20(74.0) 7(24.1) 14(66.7) N分期 N0 151(39.2) 13(48.1) 0.839 0.360 16(55.2) 9(42.9) 0.739 0.390 N1+N2 234(60.8) 14(51.9) 13(44.8) 12(57.1) M分期 M0 243(63.1) 20(74.1) 1.312 0.252 24(82.8) 15(71.4) 0.371a 0.543 M1 142(36.9) 7(25.9) 5(17.2) 6(28.6) 分期 I+II 126(32.7) 12(44.4) 1.555 0.212 14(48.3) 8(38.1) 0.512 0.474 III+IV 259(67.3) 15(55.6) 15(51.7) 13(61.9) #采用连续性校正卡方检验计算χ2值和P值;*P < 0.05;Bonferroni校正多重比较结果:①a、②a、③b表示③与①、②之间差异有统计学意义;①a、②b、③ab表示①与②之间差异有统计学意义。 表 6 MMR与MSI检测是否一致的多因素Logistic回归分析
Table 6. Multivariate logistic regression analysis of MMR and MSI detection consistency
临床病理参数 两种检测不一致 dMMR中MSI状态不一致 OR 95%CI P OR 95%CI P 息肉病史 2.646 1.175 ~ 5.961 0.019* 肿瘤部位
(直肠/右半结肠)0.310 0.109 ~ 0.879 0.032* 0.200 0.042 ~ 0.961 0.044* 低分化癌 0.184 0.044 ~ 0.773 0.021* T1+T2 0.806 0.214 ~ 3.032 0.750 *P < 0.05,提示参数为独立相关因素。 -
[1] Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA A Cancer J Clin, 2024, 74(3): 229-263. [2] Müller M F, Ibrahim A E K, Arends M J. Molecular pathological classification of colorectal cancer[J]. Virchows Arch, 2016, 469(2): 125-134. doi: 10.1007/s00428-016-1956-3 [3] De' Angelis GL, Bottarelli L, Azzoni C, et al. Microsatellite instability in colorectal cancer[J]. Acta Biomed. 2018 Dec 17; 89(9-S): 97-101. [4] Kanth P, Grimmett J, Champine M, et al. Hereditary colorectal polyposis and cancer syndromes: A primer on diagnosis and management[J]. Am J Gastroenterol, 2017, 112(10): 1509-1525. doi: 10.1038/ajg.2017.212 [5] Copija A, Waniczek D, Witkoś A, et al. Clinical significance and prognostic relevance of microsatellite instability in sporadic colorectal cancer patients[J]. Int J Mol Sci, 2017, 18(1): 107. doi: 10.3390/ijms18010107 [6] Nakaji Y, Oki E, Nakanishi R, et al. Prognostic value of BRAF V600E mutation and microsatellite instability in Japanese patients with sporadic colorectal cancer[J]. J Cancer Res Clin Oncol, 2017, 143(1): 151-160. doi: 10.1007/s00432-016-2275-4 [7] Kubecek O, Trojanova P, Molnarova V, et al. Microsatellite instability as a predictive factor for immunotherapy in malignant melanoma[J]. Med Hypotheses, 2016, 93: 74-76. doi: 10.1016/j.mehy.2016.05.023 [8] Cohen R, Rousseau B, Vidal J, et al. Immune checkpoint inhibition in colorectal cancer: Microsatellite instability and beyond[J]. Target Oncol, 2020, 15(1): 11-24. doi: 10.1007/s11523-019-00690-0 [9] Westdorp H, Fennemann F L, Weren R D A, et al. Opportunities for immunotherapy in microsatellite instable colorectal cancer[J]. Cancer Immunol Immunother, 2016, 65(10): 1249-1259. doi: 10.1007/s00262-016-1832-7 [10] Overman M J, Lonardi S, Wong K Y M, et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer[J]. J Clin Oncol, 2018, 36(8): 773-779. doi: 10.1200/JCO.2017.76.9901 [11] Xiao J, Li W, Huang Y, et al. A next-generation sequencing-based strategy combining microsatellite instability and tumor mutation burden for comprehensive molecular diagnosis of advanced colorectal cancer[J]. BMC Cancer, 2021, 21(1): 282. doi: 10.1186/s12885-021-07942-1 [12] 国家卫生健康委员会医政司, 中华医学会肿瘤学分会. 国家卫生健康委员会中国结直肠癌诊疗规范(2023年版)[J]. 中华胃肠外科杂志, 2023, 26(6): 505-528. [13] Wankhede D, Yuan T, Kloor M, et al. Clinical significance of combined tumour-infiltrating lymphocytes and microsatellite instability status in colorectal cancer: A systematic review and network meta-analysis[J]. Lancet Gastroenterol Hepatol, 2024, 9(7): 609-619. doi: 10.1016/S2468-1253(24)00091-8 [14] Amin M B, Edge S B, Greene F L, et al. AJCC cancer staging manual[M]. 8th ed. Chicago: Springer, 2017. [15] Favier A, Varinot J, Uzan C, et al. The role of immunohistochemistry markers in endometrial cancer with mismatch repair deficiency: A systematic review[J]. Cancers, 2022, 14(15): 3783. doi: 10.3390/cancers14153783 [16] Leclerc J, Vermaut C, Buisine M P. Diagnosis of Lynch syndrome and strategies to distinguish lynch-related tumors from sporadic MSI/dMMR tumors[J]. Cancers, 2021, 13(3): 467. doi: 10.3390/cancers13030467 [17] Wong M C S, Huang J, Lok V, et al. Differences in incidence and mortality trends of colorectal cancer worldwide based on sex, age, and anatomic location[J]. Clin Gastroenterol Hepatol, 2021, 19(5): 955-966. e61. [18] Sougklakos I, Athanasiadis E, Boukovinas I, et al. Treatment pathways and associated costs of metastatic colorectal cancer in Greece[J]. Cost Eff Resour Alloc, 2022, 20(1): 7. doi: 10.1186/s12962-022-00339-2 [19] Ashktorab H, Ahuja S, Kannan L, et al. A meta-analysis of MSI frequency and race in colorectal cancer[J]. Oncotarget, 2016, 7(23): 34546-34557. doi: 10.18632/oncotarget.8945 [20] Wong M C, Ding H, Wang J, et al. Prevalence and risk factors of colorectal cancer in Asia[J]. Intest Res, 2019, 17(3): 317-329. doi: 10.5217/ir.2019.00021 [21] Akagi K, Oki E, Taniguchi H, et al. Real-world data on microsatellite instability status in various unresectable or metastatic solid tumors[J]. Cancer Sci, 2021, 112(3): 1105-1113. doi: 10.1111/cas.14798 [22] Zhang C, Ding H, Sun S, et al. Incidence and detection of high microsatellite instability in colorectal cancer in a Chinese population: A meta-analysis[J]. J Gastrointest Oncol, 2020, 11(6): 1155-1163. doi: 10.21037/jgo-20-487 [23] 郭银金, 赵泽元, 王晓雄, 等. 云南地区结直肠癌患者微卫星不稳定状态与临床病理特征的关系[J]. 热带医学杂志, 2024, 24(11): 1570-1574+1642. [24] Zaanan A, Meunier K, Sangar F, et al. Microsatellite instability in colorectal cancer: From molecular oncogenic mechanisms to clinical implications[J]. Cell Oncol, 2011, 34(3): 155-176. doi: 10.1007/s13402-011-0024-x [25] Hall G, Clarkson A, Shi A, et al. Immunohistochemistry for PMS2 and MSH6 alone can replace a four antibody panel for mismatch repair deficiency screening in colorectal adenocarcinoma[J]. Pathology, 2010, 42(5): 409-413. doi: 10.3109/00313025.2010.493871 [26] Yearsley M, Hampel H, Lehman A, et al. Histologic features distinguish microsatellite-high from microsatellite-low and microsatellite-stable colorectal carcinomas, but do not differentiate germline mutations from methylation of the MLH1 promoter[J]. Hum Pathol, 2006, 37(7): 831-838. doi: 10.1016/j.humpath.2006.02.009 [27] 矣金华. 结直肠癌CpG岛甲基化表型(CIMP)与错配修复基因表达缺失相关性研究[D]. 昆明: 昆明医科大学, 2016. [28] Li G M. Mechanisms and functions of DNA mismatch repair[J]. Cell Res, 2008, 18(1): 85-98. doi: 10.1038/cr.2007.115 [29] Mei W J, Mi M, Qian J, et al. Clinicopathological characteristics of high microsatellite instability/mismatch repair-deficient colorectal cancer: A narrative review[J]. Front Immunol, 2022, 13: 1019582. doi: 10.3389/fimmu.2022.1019582 [30] Sameer A S, Nissar S, Fatima K. Mismatch repair pathway: Molecules, functions, and role in colorectal carcinogenesis[J]. Eur J Cancer Prev, 2014, 23(4): 246-257. doi: 10.1097/CEJ.0000000000000019 [31] Lizardo D Y, Kuang C, Hao S, et al. Immunotherapy efficacy on mismatch repair-deficient colorectal cancer: From bench to bedside[J]. Biochim Biophys Acta Rev Cancer, 2020, 1874(2): 188447. doi: 10.1016/j.bbcan.2020.188447 [32] 赵喜连, 郗彦凤, 白文启, 等. 错配修复蛋白和p53蛋白表达与结直肠癌的临床病理关系及其相关性[J]. 临床与实验病理学杂志, 2016, 32(4): 370-374+379. doi: 10.13315/j.cnki.cjcep.2016.04.003 [33] 王安民, 银明, 王紫薇, 等. 青年与中老年结直肠癌临床病理特征及预后对比的meta分析[J]. 重庆医学, 2025, 54(2): 489-495. [34] Kawakami H, Zaanan A, Sinicrope F A. Microsatellite instability testing and its role in the management of colorectal cancer[J]. Curr Treat Options Oncol, 2015, 16(7): 30. doi: 10.1007/s11864-015-0348-2 [35] Evrard C, Tachon G, Randrian V, et al. Microsatellite instability: Diagnosis, heterogeneity, discordance, and clinical impact in colorectal cancer[J]. Cancers, 2019, 11(10): 1567. doi: 10.3390/cancers11101567 [36] Cheah P L, Li J, Looi L M, et al. Screening for microsatellite instability in colorectal carcinoma: Practical utility of immunohistochemistry and PCR with fragment analysis in a diagnostic histopathology setting[J]. Malays J Pathol, 2019, 41(2): 91-100. [37] Chen J, Yan Q, Sun J, et al. Microsatellite status detection of colorectal cancer: Evaluation of inconsistency between PCR and IHC[J]. J Cancer, 2023, 14(7): 1132-1140. doi: 10.7150/jca.81675 [38] Joost P, Veurink N, Holck S, et al. Heterogenous mismatch-repair status in colorectal cancer[J]. Diagn Pathol, 2014, 9: 126. doi: 10.1186/1746-1596-9-126 [39] Chen W, Frankel W L. A practical guide to biomarkers for the evaluation of colorectal cancer[J]. Mod Pathol, 2019, 32(Suppl 1): 1-15. [40] McCarthy A J, Capo-Chichi J M, Spence T, et al. Heterogenous loss of mismatch repair (MMR) protein expression: A challenge for immunohistochemical interpretation and microsatellite instability (MSI) evaluation[J]. J Pathol Clin Res, 2019, 5(2): 115-129. doi: 10.1002/cjp2.120 [41] 朱惠, 蔡继东, 李溟涵, 等. 结肠直肠癌错配修复蛋白表达与微卫星稳定性的一致性分析[J]. 外科理论与实践, 2024, 29(2): 148-155. doi: 10.16139/j.1007-9610.2024.02.10 -
下载: