[1]
|
刘访,苏丹,林宏城,等. 任东林教授中西医结合防治肛肠疾病的学术理念及其临床经验撷菁[J]. 结直肠肛门外科,2023,29(2):151-157.
|
[2]
|
程议乐,武永连,李万里,等. 国内肛肠疾病流行病学调查研究进展[J]. 中国肛肠病杂志,2022,42(6):74-76.
|
[3]
|
覃金玲,王业皇,谭静玲,等. 华东地区肛肠疾病流行病学相关因素分析[J]. 中国肛肠病杂志,2016,36(2):25-28.
|
[4]
|
Navkar N V,Balakrishnan S,Kharbech S,et al. 3D visualization of perianal fistulas using parametric models[J]. Tech Coloproctol,2022,26(4):291-300. doi: 10.1007/s10151-022-02573-5
|
[5]
|
Nakata N. Recent technical development of artificial intelligence for diagnostic medical imaging[J]. Jpn J Radiol,2019,37(2):103-108. doi: 10.1007/s11604-018-0804-6
|
[6]
|
Nakaura T,Higaki T,Awai K,et al. A primer for understanding radiology articles about machine learning and deep learning[J]. Diagn Interv Imaging,2020,101(12):765-770. doi: 10.1016/j.diii.2020.10.001
|
[7]
|
De Reyni è s A,Assi é G,Rickman D S,et al. Gene expression profiling reveals a new classification of adrenocortical tumors and identifies molecular predictors of malignancy and survival[J]. J Clin Oncol,2009,27(7):1108-1115. doi: 10.1200/JCO.2008.18.5678
|
[8]
|
Egger J,Gsaxner C,Pepe A,et al. Medical deep learning-A systematic meta-review[J]. Comput Methods Programs Biomed,2022,221:106874. doi: 10.1016/j.cmpb.2022.106874
|
[9]
|
Kim T M,Choi S J,Ko J Y,et al. Fully automatic volume measurement of the adrenal gland on CT using deep learning to classify adrenal hyperplasia[J]. Eur Radiol,2023,33(6):4292-4302.
|
[10]
|
Robinson-Weiss C,Patel J,Bizzo B C,et al. Machine Learning for Adrenal Gland Segmentation and Classification of Normal and Adrenal Masses at CT[J]. Radiology,2023,306(2):e220101. doi: 10.1148/radiol.220101
|
[11]
|
李昕,郑丽华. 肛瘘常用手术方式[J]. 中国临床医生杂志,2023,51(1):3-6.
|
[12]
|
Charalampopoulos A,Papakonstantinou D,Bagias G,et al. Surgery of simple and complex anal fistulae in adults: A review of the literature for optimal surgical outcomes[J]. Cureus,2023,15(3):e35888.
|
[13]
|
Gao H,Cheng X,Gao L,et al. Time-scheduled dotted and solid thread-ligating therapy combined with vacuum sealing drainage for treating high complex anal fistula[J]. Am J Transl Res,2021,13(10):11737-11744.
|
[14]
|
王淙锦,杨雅兰,庄华,等. 克罗恩病相关性肛瘘和普通性肛瘘间的超声影像学特征比较[J]. 西部医学,2022,34(03):458-463.
|
[15]
|
Zhou Z. Pay attention to the imaging diagnosis of complex anal fistula[J]. Zhonghua Wei Chang Wai Ke Za Zhi,2015,18(12):1193-1196.
|
[16]
|
Han L,Chen Y,Cheng W,et al. Deep learning-based CT image characteristics and postoperative anal function restoration for patients with complex anal fistula[J]. J Healthc Eng,2021,2021:1730158.
|
[17]
|
Iqbal N,Sackitey C,Gupta A,et al. The development of a minimum dataset for MRI reporting of anorectal fistula: a multi-disciplinary,expert consensus process[J]. European Radiology,2022,32(12):8306-8316. doi: 10.1007/s00330-022-08931-z
|
[18]
|
袁军,陈欣悦,常时新,等. 基于T1增强成像的人工智能算法在肛瘘内口诊断中的可行性研究[J]. 安徽医药,2023,27(3):447-452.
|
[19]
|
Parian A M,Obi M,Fleshner P,et al. Management of perianal Crohn's disease[J]. Am J Gastroenterol,2023,118(8):1323-1331. doi: 10.14309/ajg.0000000000002326
|
[20]
|
Song E M,Lee H S,Kim Y J,et al. Incidence and outcomes of perianal disease in an asian population with Crohn's disease: A nationwide population-based study[J]. Dig Dis Sci,2020,65(4):1189-1196. doi: 10.1007/s10620-019-05819-9
|
[21]
|
Jeri-McFarlane S,Garc í a-Granero Á,Gil-Catalan A,et al. Surgical strategy for supralevator abscess in Perianal Crohn’s disease: emergency surgery and residual complex fistula[J]. Tech Coloproctol,2021,25(10):1163-1164. doi: 10.1007/s10151-021-02460-5
|
[22]
|
Lee J L,Yoon Y S and Yu C S. Treatment strategy for perianal fistulas in Crohn disease patients: The surgeon's point of view[J]. Ann Coloproctol,2021,37(1):5-15. doi: 10.3393/ac.2021.02.08
|
[23]
|
Sudoł-Szopi ń ska I,Santoro G A,Kołodziejczak M,et al. Magnetic resonance imaging template to standardize reporting of anal fistulas[J]. Tech Coloproctol,2021,25(3):333-337. doi: 10.1007/s10151-020-02384-6
|
[24]
|
Jeri-McFarlane S,Garcia-Granero A,Ochogavia-Segui A,et al. Three-dimensional modelling as a novel interactive tool for preoperative planning for complex perianal fistulas in Crohn's disease[J]. Colorectal Dis,2023,25(6):1279-1284. doi: 10.1111/codi.16539
|
[25]
|
李兰兰, 邓珂, 张恒, 等 基于深度卷积神经网络的克罗恩病肛瘘磁共振成像诊断模型初探[J]. 中华炎性肠病杂志, 2023, 7(2): 144-150.
|
[26]
|
Azmi F P,Rahman N A A,Mazlan L,et al. A Case of Large Perianal Mucinous Adenocarcinoma Arising from Recurrent Abscess and Complex Fistulae[J]. Case Rep Surg,2020,2020:1798543.
|
[27]
|
Solis E,Liang Y,Ctercteko G,et al. Dangers of delayed diagnosis of perianal abscess and undrained perianal sepsis in Fournier's gangrene: a case series[J]. BMJ Case Rep,2020,13(10):10.1136/bcr-2020-236503.
|
[28]
|
Liu Y H,Lv Z B,Liu J B,et al. Perianorectal abscesses and fistula due to ingested jujube pit in infant: Two case reports[J]. World J Clin Cases,2020,8(20):4930-4937. doi: 10.12998/wjcc.v8.i20.4930
|
[29]
|
Chang H,Kuo M C,Tang T C,et al. Clinical Features and Recurrence Pattern of Perianal Abscess in Patients with Acute Myeloid Leukemia[J]. Acta Haematol,2017,138(1):10-13. doi: 10.1159/000475589
|
[30]
|
Ding W,Sun Y R,Wu Z J. Treatment of Perianal Abscess and Fistula in Infants and Young Children: From Basic Etiology to Clinical Features[J]. Am Surg,2021,87(6):927-932. doi: 10.1177/0003134820954829
|
[31]
|
Han S,Yang J and Xu J. Deep Learning-Based Computed Tomography Image Features in the Detection and Diagnosis of Perianal Abscess Tissue[J]. J Healthc Eng,2021,2021:3706265.
|
[32]
|
Yang J,Han S and Xu J. Deep Learning-Based Magnetic Resonance Imaging Features in Diagnosis of Perianal Abscess and Fistula Formation[J]. Contrast Media Mol Imaging,2021,2021:9066128.
|
[33]
|
江维,张虹玺,隋楠,等. 中国城市居民常见肛肠疾病流行病学调查[J]. 中国公共卫生,2016,32(10):1293-1296.
|
[34]
|
中华医学会消化内镜学分会内痔协作组. 中国消化内镜内痔诊疗指南及操作共识(2021)[J]. 中华消化内镜杂志,2021,38(9):676-687.
|
[35]
|
陆建英,沈文娟,顾莹,等. 深度学习在内镜下内痔诊断及危险分级中的应用[J]. 中国内镜杂志,2023,29(02):1-7.
|
[36]
|
刘璐,林嘉希,朱世祺,等. 基于ResNet的可解释性计算机视觉模型在内镜下内痔评估中的应用[J]. 现代消化及介入诊疗,2023,08:^972-975+980.
|
[37]
|
Komeda Y, Handa H, Watanabe T, et al. Computer-Aided Diagnosis Based on Convolutional Neural Network System for Colorectal Polyp Classification: Preliminary Experience[J]. Oncology, 2017, 93 Suppl 1(30-34).
|
[38]
|
Chen P J,Lin M C,Lai M J,et al. Accurate Classification of Diminutive Colorectal Polyps Using Computer-Aided Analysis[J]. Gastroenterology,2018,154(3):568-575. doi: 10.1053/j.gastro.2017.10.010
|
[39]
|
Bedrikovetski S,Dudi-Venkata N N,Kroon H M,et al. Artificial intelligence for pre-operative lymph node staging in colorectal cancer: a systematic review and meta-analysis[J]. BMC Cancer,2021,21(1):1058. doi: 10.1186/s12885-021-08773-w
|
[40]
|
Geng Z,Zhang Y,Yin S,et al. Preoperatively Grading Rectal Cancer with the Combination of Intravoxel Incoherent Motions Imaging and Diffusion Kurtosis Imaging[J]. Contrast Media Mol Imaging,2020,2020:2164509.
|
[41]
|
He B,Ji T,Zhang H,et al. MRI-based radiomics signature for tumor grading of rectal carcinoma using random forest model[J]. J Cell Physiol,2019,234(11):20501-20509. doi: 10.1002/jcp.28650
|
[42]
|
Inchingolo R,Maino C,Cannella R,et al. Radiomics in colorectal cancer patients[J]. World J Gastroenterol,2023,29(19):2888-2904. doi: 10.3748/wjg.v29.i19.2888
|
[43]
|
Mitsala A,Tsalikidis C,Pitiakoudis M,et al. Artificial Intelligence in Colorectal Cancer Screening,Diagnosis and Treatment. A New Era[J]. Current Oncology,2021,28(3):1581-1607. doi: 10.3390/curroncol28030149
|