留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二甲双胍通过AMPK/PPAR-γ通路诱导自噬抑制高糖对血管平滑肌细胞的增殖作用

张紫微 郑甲林 许晓宇 王红

张紫微, 郑甲林, 许晓宇, 王红. 二甲双胍通过AMPK/PPAR-γ通路诱导自噬抑制高糖对血管平滑肌细胞的增殖作用[J]. 昆明医科大学学报, 2023, 44(10): 60-66. doi: 10.12259/j.issn.2095-610X.S20231026
引用本文: 张紫微, 郑甲林, 许晓宇, 王红. 二甲双胍通过AMPK/PPAR-γ通路诱导自噬抑制高糖对血管平滑肌细胞的增殖作用[J]. 昆明医科大学学报, 2023, 44(10): 60-66. doi: 10.12259/j.issn.2095-610X.S20231026
Ziwei ZHANG, Jialin ZHENG, Xiaoyu XU, Hong WANG. Metformin Inhibits high Glucose-induced Vascular Smooth Muscle Cells Proliferation by Promoting Autophagy via AMPK/PPAR-γ[J]. Journal of Kunming Medical University, 2023, 44(10): 60-66. doi: 10.12259/j.issn.2095-610X.S20231026
Citation: Ziwei ZHANG, Jialin ZHENG, Xiaoyu XU, Hong WANG. Metformin Inhibits high Glucose-induced Vascular Smooth Muscle Cells Proliferation by Promoting Autophagy via AMPK/PPAR-γ[J]. Journal of Kunming Medical University, 2023, 44(10): 60-66. doi: 10.12259/j.issn.2095-610X.S20231026

二甲双胍通过AMPK/PPAR-γ通路诱导自噬抑制高糖对血管平滑肌细胞的增殖作用

doi: 10.12259/j.issn.2095-610X.S20231026
基金项目: 云南省科技厅-昆明医科大学应用基础研究联合专项基金资助项目(81170250);云南省医学创新团队基金资助项目(202005AE160020)
详细信息
    作者简介:

    张紫微(1985~),男,江西九江人,医学博士,副主任医师,主要从事冠心病基础研究与介入诊疗工作

    通讯作者:

    王红,E-mail:wangh43@126.com

  • 中图分类号: R54

Metformin Inhibits high Glucose-induced Vascular Smooth Muscle Cells Proliferation by Promoting Autophagy via AMPK/PPAR-γ

  • 摘要:   目的  探讨二甲双胍(Metformin)对高糖培养的小鼠主动脉血管平滑肌细胞(vascular smooth muscle cell,VSMCs)自噬、细胞增殖的影响及其调控机制。   方法  用Western blot检测不同处理组微管相关蛋白轻链-3-Ⅱ(LC3-Ⅱ),Becline-1蛋白水平变化,透射电镜观察各处理组VSMCs自噬小体水平;用Western blot检测不同处理组p-AMPK/AMPK、PPAR-γ蛋白表达水平;用EDU法检测不同处理组VSMCs增殖情况。  结果  二甲双胍、雷帕霉素逆转高糖抑制VSMCs自噬的作用(P < 0.001);Compound C、GW9662增加高糖抑制VSMCs自噬的作用(P < 0.05);二甲双胍逆转高糖对AMPK/PPAR-γ通路的负调控(P < 0.01);二甲双胍、雷帕霉素抑制高糖促进的VSMCs增殖(P < 0.001),Compound C、GW9662逆转二甲双胍抑制高糖促VSMCs增殖的作用(P < 0.05)。  结论  高糖促进VSMCs增殖可能是自噬调节相关的,二甲双胍可通过激活AMPK/PPAR-γ通路上调VSMCs自噬水平,抑制高糖促进的VSMCs异常增殖。
  • 图  1  二甲双胍对高糖培养下的VSMCs自噬水平的影响

    A:Western blot检测对照组、HG组、HG+MET组及HG+RAP组LC3-Ⅱ/LC3-Ⅰ、Becline-1的表达情况;B:定量分析不同处理组LC3-Ⅱ/LC3-Ⅰ的表达水平;C:定量分析不同处理组Becline-1蛋白的表达水平;D:电镜检测对照组、HG组、MET+HG组自噬小体(12000×)(黑色箭头示自噬小体)。*P < 0.05,**P < 0.01,***P < 0.001 。

    Figure  1.  Effect of metforin on autophagy in HG-cultured VSMCs

    图  2  AMPK、PPAR-γ抑制剂对VSMCs自噬的影响

    A:Western blot检测对照组、HG组、HG+CC组及HG+GW组LC3-Ⅱ/LC3-Ⅰ、Becline-1的表达情况;B:定量分析不同处理组LC3-Ⅱ/LC3-Ⅰ的表达水平;C:定量分析不同处理组Becline-1的表达水平。*P < 0.05,**P < 0.01,***P < 0.001。

    Figure  2.  Effect of AMPK or PPAR-γ inhibitor on autophagy in VSMCs

    图  3  二甲双胍对高糖培养下VSMCs p-AMPK/AMPK、PPAR-γ表达的影响

    A:Western blot检测对照组、HG组、HG+MET组及HG+CC组p-AMPK/AMPK的表达;B:定量分析不同处理组p-AMPK/AMPK的表达水平;C:Western blot检测对照组、HG组、HG+MET组及HG+GW组PPAR-γ的表达;D:定量分析不同处理组PPAR-γ的表达水平。*P < 0.05,**P < 0.01,***P < 0.001。

    Figure  3.  Effect of metformin and high glucose on p-AMPK/AMPK、PPAR-γexpression of VSMCs

    图  4  二甲双胍抑制高糖诱导的VSMCs增殖

    A:EDV法检测不同处理组VSMCs增殖情况;B:EDV阳性细胞统计比较。* P < 0.05,** P < 0.01,***P < 0.001 VS CTRL;#P < 0.05,###P < 0.001 VS HG,&P < 0.05,&&P < 0.01,&&&P < 0.001 VS HG+MET。

    Figure  4.  Effect of metformin on high glucose-induced proliferation of VSMCs

  • [1] Chiong M,Morales P,Torres G,et al. Influence of glucose metabolism on vascular smooth muscle cell proliferation[J]. Vasa,2013,42(1):8-16. doi: 10.1024/0301-1526/a000243
    [2] Yang M,Fang J,Liu Q,et al. Role of ROS-TRPM7-ERK1/2 axis in high concentration glucose-mediated proliferation and phenotype switching of rat aortic vascular smooth muscle cells[J]. Biochemical and Biophysical Research Communications,2017,494(3-4):526-533. doi: 10.1016/j.bbrc.2017.10.122
    [3] Marino G,Niso-Santano M,Baehrecke E H,et al. Self-consumption: The interplay of autophagy and apoptosis[J]. Nat Rev Mol Cell Biol,2014,15(2):81-94. doi: 10.1038/nrm3735
    [4] Wu H,Song A,Hu W,et al. The anti-atherosclerotic effect of paeonol against vascular smooth muscle cell proliferation by up-regulation of autophagy via the AMPK/mTOR signaling pathway[J]. Frontiers in Pharmacology,2018,8:948. doi: 10.3389/fphar.2017.00948
    [5] 张紫微,杨丽霞,吕晋琳,等. 血管紧张素Ⅱ诱发自噬对血管平滑肌细胞表型转换的调控作用[J]. 中国动脉硬化杂志,2017,25(5):452-456.
    [6] Phadwal K,Feng D,Zhu D,et al. Autophagy as a novel therapeutic target in vascular calcification[J]. Pharmacology & Therapeutics,2020,206:107430.
    [7] Peng S,Xu L,Che X,et al. Atorvastatin inhibits inflammatory response,attenuates lipid deposition,and improves the stability of vulnerable atherosclerotic plaques by modulating autophagy[J]. Frontiers in Ppharmacology,2018,9:438. doi: 10.3389/fphar.2018.00438
    [8] Poznyak A V,Litvinova L,Poggio P,et al. From diabetes to atherosclerosis: Potential of metformin for management of cardiovascular disease[J]. International Journal of Molecular Sciences,2022,23(17):9738. doi: 10.3390/ijms23179738
    [9] Yang Q,Yuan H,Chen M,et al. Metformin ameliorates the progression of atherosclerosis via suppressing macrophage infiltration and inflammatory responses in rabbits[J]. Life Sciences,2018,198:56-64. doi: 10.1016/j.lfs.2018.02.017
    [10] Wu H,Feng K,Zhang C,et al. Metformin attenuates atherosclerosis and plaque vulnerability by upregulating KLF2-mediated autophagy in apoE−/-mice[J]. Biochemical and Biophysical Research Communications,2021,557:334-341. doi: 10.1016/j.bbrc.2021.04.029
    [11] Phadwal K,Koo E,Jones R A,et al. Metformin protects against vascular calcification through the selective degradation of Runx2 by the p62 autophagy receptor[J]. Journal of Cellular Physiology,2022,237(11):4303-4316. doi: 10.1002/jcp.30887
    [12] Yang B,Gao X,Sun Y,et al. Dihydroartemisinin alleviates high glucose-induced vascular smooth muscle cells proliferation and inflammation by depressing the miR-376b-3p/KLF15 pathway[J]. Biochemical and Biophysical Research Communications,2020,530(3):574-580. doi: 10.1016/j.bbrc.2020.07.095
    [13] Yuan T,Yang T,Chen H,et al. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis[J]. Redox Biology,2019,20:247-260. doi: 10.1016/j.redox.2018.09.025
    [14] Tiong Y L,Ng K Y,Koh R Y,et al. Melatonin inhibits high glucose-induced ox-LDL/LDL expression and apoptosis in human umbilical endothelial cells[J]. Hormone Molecular Biology and Clinical Investigation,2020,41(4):20200009. doi: 10.1515/hmbci-2020-0009
    [15] Zhao Y,Lu N,Zhang Y,et al. High glucose induced rat aorta vascular smooth muscle cell oxidative injury: Involvement of protein tyrosine nitration[J]. Journal of Physiology and Biochemistry,2011,67(4):539-549. doi: 10.1007/s13105-011-0099-x
    [16] Liu J,Wu J,Sun A,et al. Hydrogen sulfide decreases high glucose/palmitate-induced autophagy in endothelial cells by the Nrf2-ROS-AMPK signaling pathway[J]. Cell & Bioscience,2016,6(1):1-17.
    [17] Xu K,Liu X,Ke Z,et al. Resveratrol modulates apoptosis and autophagy induced by high glucose and palmitate in cardiac cells[J]. Cellular Physiology and Biochemistry,2018,46(5):2031-2040. doi: 10.1159/000489442
    [18] De Jager J,Kooy A,Schalkwijk C,et al. Long‐term effects of metformin on endothelial function in type 2 diabetes: A randomized controlled trial[J]. Journal of Internal Medicine,2014,275(1):59-70. doi: 10.1111/joim.12128
    [19] Van der Aa M P,Elst M,Van De Garde E,et al. Long-term treatment with metformin in obese,insulin-resistant adolescents: Results of a randomized double-blinded placebo-controlled trial[J]. Nutrition & Diabetes,2016,6(8):e228.
    [20] He X,Chen X,Wang L,et al. Metformin ameliorates Ox-LDL-induced foam cell formation in raw264.7 cells by promoting ABCG-1 mediated cholesterol efflux[J]. Life Sciences,2019,216:67-74. doi: 10.1016/j.lfs.2018.09.024
    [21] Gopoju R,Panangipalli S,Kotamraju S. Metformin treatment prevents SREBP2-mediated cholesterol uptake and improves lipid homeostasis during oxidative stress-induced atherosclerosis[J]. Free Radical Biology and Medicine,2018,118:85-97. doi: 10.1016/j.freeradbiomed.2018.02.031
    [22] You G,Long X,Song F,et al. Metformin activates the AMPK-mTOR pathway by modulating lncRNA TUG1 to induce autophagy and inhibit atherosclerosis[J]. Drug Design,Development and Therapy,2020,14:457. doi: 10.2147/DDDT.S233932
    [23] Faghfouri A H,Khajebishak Y,Payahoo L,et al. PPAR-gamma agonists: Potential modulators of autophagy in obesity[J]. European Journal of Pharmacology,2021,912:174562. doi: 10.1016/j.ejphar.2021.174562
    [24] Wang H,Wang A,Wang X,et al. AMPK/PPAR-γ/NF-κB axis participates in ROS-mediated apoptosis and autophagy caused by cadmium in pig liver[J]. Environmental Pollution,2022,294:118659. doi: 10.1016/j.envpol.2021.118659
  • [1] 王玲, 秦祥川, 李金秋, 阿仙姑·哈斯木.  CD147通过AIM2炎症小体介导宫颈癌细胞焦亡和增殖, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240103
    [2] 张晔琳, 马丽娅, 彭旭晖, 杨禾丰, 佘睿.  hsa-let-7a-5p调控牙周膜干细胞增殖及凋亡, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231028
    [3] 张梁, 王保全, 雷喜锋, 王旭, 柯阳, 张玮.  miR-29c-3p/IGF1分子轴对肝星状细胞活化,增殖和凋亡的作用机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230926
    [4] 陈怡璇, 王琳, 夏秀宏, 彭在坤, 丁奕, 史润娇, 雷学芬.  自噬在肝细胞癌中的作用机制研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230416
    [5] 张莉, 赵熙, 赵华祥, 熊宝, 徐洁, 汤广平, 喻卓, 陈鹏.  卫茅碱对人血管内皮细胞及血管平滑肌细胞增殖、迁移及细胞周期的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230723
    [6] 杨诗媛, 张昊, 胡图强.  扁塑藤素通过调节自噬对口腔鳞状细胞癌细胞CAL-27增殖的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231024
    [7] 王保全, 张伟, 田园, 雷喜锋, 王旭.  miR-142-5p通过CCND1调控胆囊癌细胞的增殖和转移, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220223
    [8] 张玮, 王保全, 雷喜锋, 王旭, 张梁.  miR-125b-5p调控HK2抑制胆囊癌细胞增殖和糖酵解, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20221206
    [9] 廖周俊, 杨少华, 刘立鑫, 胡晟, 陈轶晖, 康强, 张小文.  AK4对肝内胆管癌细胞HUCCT1增殖、迁移的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220611
    [10] 杨兰, 贾霄, 姜奕彤, 崔琪, 刘光赐, 何颖红.  UBE2C基因沉默表达对人胃癌AGS细胞增殖和迁移的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210504
    [11] 薛国强, 卫欣欣, 姚娜, 赵文化.  二甲双胍通过调控PARP-1活性对2型糖尿病肾脏的保护作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210632
    [12] 魏东.  脆性位点基因WWOX调控人胆囊癌细胞的体外增殖效应, 昆明医科大学学报.
    [13] 贾楠楠.  Gnaq对SH-SY5Y细胞增殖的作用及机制, 昆明医科大学学报.
    [14] 刘立鑫.  二甲双胍对肝癌细胞HCCLM3生物学行为的影响, 昆明医科大学学报.
    [15] 倪滔.  改良贴壁组织块法与改良I型胶原酶消法对成骨细胞增殖效果的比较研究, 昆明医科大学学报.
    [16] 潘艳丽.  吡格列酮对高糖诱导下血管内皮细胞凋亡的影响, 昆明医科大学学报.
    [17] 刘佳鑫.  SDF-1/CXCR4在恶性胶质瘤细胞体外增殖、迁移及侵袭中的作用, 昆明医科大学学报.
    [18] 夏英杰.  SD大鼠髁状突颈部骨折对大鼠髁状突软骨细胞增殖与凋亡的影响, 昆明医科大学学报.
    [19] 武斌.  大豆苷元对人乳牙牙髓干细胞增殖和成骨分化的影响, 昆明医科大学学报.
    [20] 李雄.  氧自由基在血管紧张素Ⅱ诱导ECV304细胞增殖中的作用, 昆明医科大学学报.
  • 加载中
图(4)
计量
  • 文章访问数:  1670
  • HTML全文浏览量:  1153
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-23
  • 网络出版日期:  2023-09-12
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回