留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二甲双胍通过AMPK/PPAR-γ通路诱导自噬抑制高糖对血管平滑肌细胞的增殖作用

张紫微 郑甲林 许晓宇 王红

张紫微, 郑甲林, 许晓宇, 王红. 二甲双胍通过AMPK/PPAR-γ通路诱导自噬抑制高糖对血管平滑肌细胞的增殖作用[J]. 昆明医科大学学报, 2023, 44(10): 60-66. doi: 10.12259/j.issn.2095-610X.S20231026
引用本文: 张紫微, 郑甲林, 许晓宇, 王红. 二甲双胍通过AMPK/PPAR-γ通路诱导自噬抑制高糖对血管平滑肌细胞的增殖作用[J]. 昆明医科大学学报, 2023, 44(10): 60-66. doi: 10.12259/j.issn.2095-610X.S20231026
Ziwei ZHANG, Jialin ZHENG, Xiaoyu XU, Hong WANG. Metformin Inhibits high Glucose-induced Vascular Smooth Muscle Cells Proliferation by Promoting Autophagy via AMPK/PPAR-γ[J]. Journal of Kunming Medical University, 2023, 44(10): 60-66. doi: 10.12259/j.issn.2095-610X.S20231026
Citation: Ziwei ZHANG, Jialin ZHENG, Xiaoyu XU, Hong WANG. Metformin Inhibits high Glucose-induced Vascular Smooth Muscle Cells Proliferation by Promoting Autophagy via AMPK/PPAR-γ[J]. Journal of Kunming Medical University, 2023, 44(10): 60-66. doi: 10.12259/j.issn.2095-610X.S20231026

二甲双胍通过AMPK/PPAR-γ通路诱导自噬抑制高糖对血管平滑肌细胞的增殖作用

doi: 10.12259/j.issn.2095-610X.S20231026
基金项目: 云南省科技厅-昆明医科大学应用基础研究联合专项基金资助项目(81170250);云南省医学创新团队基金资助项目(202005AE160020)
详细信息
    作者简介:

    张紫微(1985~),男,江西九江人,医学博士,副主任医师,主要从事冠心病基础研究与介入诊疗工作

    通讯作者:

    王红,E-mail:wangh43@126.com

  • 中图分类号: R54

Metformin Inhibits high Glucose-induced Vascular Smooth Muscle Cells Proliferation by Promoting Autophagy via AMPK/PPAR-γ

  • 摘要:   目的  探讨二甲双胍(Metformin)对高糖培养的小鼠主动脉血管平滑肌细胞(vascular smooth muscle cell,VSMCs)自噬、细胞增殖的影响及其调控机制。   方法  用Western blot检测不同处理组微管相关蛋白轻链-3-Ⅱ(LC3-Ⅱ),Becline-1蛋白水平变化,透射电镜观察各处理组VSMCs自噬小体水平;用Western blot检测不同处理组p-AMPK/AMPK、PPAR-γ蛋白表达水平;用EDU法检测不同处理组VSMCs增殖情况。  结果  二甲双胍、雷帕霉素逆转高糖抑制VSMCs自噬的作用(P < 0.001);Compound C、GW9662增加高糖抑制VSMCs自噬的作用(P < 0.05);二甲双胍逆转高糖对AMPK/PPAR-γ通路的负调控(P < 0.01);二甲双胍、雷帕霉素抑制高糖促进的VSMCs增殖(P < 0.001),Compound C、GW9662逆转二甲双胍抑制高糖促VSMCs增殖的作用(P < 0.05)。  结论  高糖促进VSMCs增殖可能是自噬调节相关的,二甲双胍可通过激活AMPK/PPAR-γ通路上调VSMCs自噬水平,抑制高糖促进的VSMCs异常增殖。
  • 图  1  二甲双胍对高糖培养下的VSMCs自噬水平的影响

    A:Western blot检测对照组、HG组、HG+MET组及HG+RAP组LC3-Ⅱ/LC3-Ⅰ、Becline-1的表达情况;B:定量分析不同处理组LC3-Ⅱ/LC3-Ⅰ的表达水平;C:定量分析不同处理组Becline-1蛋白的表达水平;D:电镜检测对照组、HG组、MET+HG组自噬小体(12000×)(黑色箭头示自噬小体)。*P < 0.05,**P < 0.01,***P < 0.001 。

    Figure  1.  Effect of metforin on autophagy in HG-cultured VSMCs

    图  2  AMPK、PPAR-γ抑制剂对VSMCs自噬的影响

    A:Western blot检测对照组、HG组、HG+CC组及HG+GW组LC3-Ⅱ/LC3-Ⅰ、Becline-1的表达情况;B:定量分析不同处理组LC3-Ⅱ/LC3-Ⅰ的表达水平;C:定量分析不同处理组Becline-1的表达水平。*P < 0.05,**P < 0.01,***P < 0.001。

    Figure  2.  Effect of AMPK or PPAR-γ inhibitor on autophagy in VSMCs

    图  3  二甲双胍对高糖培养下VSMCs p-AMPK/AMPK、PPAR-γ表达的影响

    A:Western blot检测对照组、HG组、HG+MET组及HG+CC组p-AMPK/AMPK的表达;B:定量分析不同处理组p-AMPK/AMPK的表达水平;C:Western blot检测对照组、HG组、HG+MET组及HG+GW组PPAR-γ的表达;D:定量分析不同处理组PPAR-γ的表达水平。*P < 0.05,**P < 0.01,***P < 0.001。

    Figure  3.  Effect of metformin and high glucose on p-AMPK/AMPK、PPAR-γexpression of VSMCs

    图  4  二甲双胍抑制高糖诱导的VSMCs增殖

    A:EDV法检测不同处理组VSMCs增殖情况;B:EDV阳性细胞统计比较。* P < 0.05,** P < 0.01,***P < 0.001 VS CTRL;#P < 0.05,###P < 0.001 VS HG,&P < 0.05,&&P < 0.01,&&&P < 0.001 VS HG+MET。

    Figure  4.  Effect of metformin on high glucose-induced proliferation of VSMCs

  • [1] Chiong M,Morales P,Torres G,et al. Influence of glucose metabolism on vascular smooth muscle cell proliferation[J]. Vasa,2013,42(1):8-16. doi: 10.1024/0301-1526/a000243
    [2] Yang M,Fang J,Liu Q,et al. Role of ROS-TRPM7-ERK1/2 axis in high concentration glucose-mediated proliferation and phenotype switching of rat aortic vascular smooth muscle cells[J]. Biochemical and Biophysical Research Communications,2017,494(3-4):526-533. doi: 10.1016/j.bbrc.2017.10.122
    [3] Marino G,Niso-Santano M,Baehrecke E H,et al. Self-consumption: The interplay of autophagy and apoptosis[J]. Nat Rev Mol Cell Biol,2014,15(2):81-94. doi: 10.1038/nrm3735
    [4] Wu H,Song A,Hu W,et al. The anti-atherosclerotic effect of paeonol against vascular smooth muscle cell proliferation by up-regulation of autophagy via the AMPK/mTOR signaling pathway[J]. Frontiers in Pharmacology,2018,8:948. doi: 10.3389/fphar.2017.00948
    [5] 张紫微,杨丽霞,吕晋琳,等. 血管紧张素Ⅱ诱发自噬对血管平滑肌细胞表型转换的调控作用[J]. 中国动脉硬化杂志,2017,25(5):452-456.
    [6] Phadwal K,Feng D,Zhu D,et al. Autophagy as a novel therapeutic target in vascular calcification[J]. Pharmacology & Therapeutics,2020,206:107430.
    [7] Peng S,Xu L,Che X,et al. Atorvastatin inhibits inflammatory response,attenuates lipid deposition,and improves the stability of vulnerable atherosclerotic plaques by modulating autophagy[J]. Frontiers in Ppharmacology,2018,9:438. doi: 10.3389/fphar.2018.00438
    [8] Poznyak A V,Litvinova L,Poggio P,et al. From diabetes to atherosclerosis: Potential of metformin for management of cardiovascular disease[J]. International Journal of Molecular Sciences,2022,23(17):9738. doi: 10.3390/ijms23179738
    [9] Yang Q,Yuan H,Chen M,et al. Metformin ameliorates the progression of atherosclerosis via suppressing macrophage infiltration and inflammatory responses in rabbits[J]. Life Sciences,2018,198:56-64. doi: 10.1016/j.lfs.2018.02.017
    [10] Wu H,Feng K,Zhang C,et al. Metformin attenuates atherosclerosis and plaque vulnerability by upregulating KLF2-mediated autophagy in apoE−/-mice[J]. Biochemical and Biophysical Research Communications,2021,557:334-341. doi: 10.1016/j.bbrc.2021.04.029
    [11] Phadwal K,Koo E,Jones R A,et al. Metformin protects against vascular calcification through the selective degradation of Runx2 by the p62 autophagy receptor[J]. Journal of Cellular Physiology,2022,237(11):4303-4316. doi: 10.1002/jcp.30887
    [12] Yang B,Gao X,Sun Y,et al. Dihydroartemisinin alleviates high glucose-induced vascular smooth muscle cells proliferation and inflammation by depressing the miR-376b-3p/KLF15 pathway[J]. Biochemical and Biophysical Research Communications,2020,530(3):574-580. doi: 10.1016/j.bbrc.2020.07.095
    [13] Yuan T,Yang T,Chen H,et al. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis[J]. Redox Biology,2019,20:247-260. doi: 10.1016/j.redox.2018.09.025
    [14] Tiong Y L,Ng K Y,Koh R Y,et al. Melatonin inhibits high glucose-induced ox-LDL/LDL expression and apoptosis in human umbilical endothelial cells[J]. Hormone Molecular Biology and Clinical Investigation,2020,41(4):20200009. doi: 10.1515/hmbci-2020-0009
    [15] Zhao Y,Lu N,Zhang Y,et al. High glucose induced rat aorta vascular smooth muscle cell oxidative injury: Involvement of protein tyrosine nitration[J]. Journal of Physiology and Biochemistry,2011,67(4):539-549. doi: 10.1007/s13105-011-0099-x
    [16] Liu J,Wu J,Sun A,et al. Hydrogen sulfide decreases high glucose/palmitate-induced autophagy in endothelial cells by the Nrf2-ROS-AMPK signaling pathway[J]. Cell & Bioscience,2016,6(1):1-17.
    [17] Xu K,Liu X,Ke Z,et al. Resveratrol modulates apoptosis and autophagy induced by high glucose and palmitate in cardiac cells[J]. Cellular Physiology and Biochemistry,2018,46(5):2031-2040. doi: 10.1159/000489442
    [18] De Jager J,Kooy A,Schalkwijk C,et al. Long‐term effects of metformin on endothelial function in type 2 diabetes: A randomized controlled trial[J]. Journal of Internal Medicine,2014,275(1):59-70. doi: 10.1111/joim.12128
    [19] Van der Aa M P,Elst M,Van De Garde E,et al. Long-term treatment with metformin in obese,insulin-resistant adolescents: Results of a randomized double-blinded placebo-controlled trial[J]. Nutrition & Diabetes,2016,6(8):e228.
    [20] He X,Chen X,Wang L,et al. Metformin ameliorates Ox-LDL-induced foam cell formation in raw264.7 cells by promoting ABCG-1 mediated cholesterol efflux[J]. Life Sciences,2019,216:67-74. doi: 10.1016/j.lfs.2018.09.024
    [21] Gopoju R,Panangipalli S,Kotamraju S. Metformin treatment prevents SREBP2-mediated cholesterol uptake and improves lipid homeostasis during oxidative stress-induced atherosclerosis[J]. Free Radical Biology and Medicine,2018,118:85-97. doi: 10.1016/j.freeradbiomed.2018.02.031
    [22] You G,Long X,Song F,et al. Metformin activates the AMPK-mTOR pathway by modulating lncRNA TUG1 to induce autophagy and inhibit atherosclerosis[J]. Drug Design,Development and Therapy,2020,14:457. doi: 10.2147/DDDT.S233932
    [23] Faghfouri A H,Khajebishak Y,Payahoo L,et al. PPAR-gamma agonists: Potential modulators of autophagy in obesity[J]. European Journal of Pharmacology,2021,912:174562. doi: 10.1016/j.ejphar.2021.174562
    [24] Wang H,Wang A,Wang X,et al. AMPK/PPAR-γ/NF-κB axis participates in ROS-mediated apoptosis and autophagy caused by cadmium in pig liver[J]. Environmental Pollution,2022,294:118659. doi: 10.1016/j.envpol.2021.118659
  • [1] 王玲, 秦祥川, 李金秋, 阿仙姑·哈斯木.  CD147通过AIM2炎症小体介导宫颈癌细胞焦亡和增殖, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240103
    [2] 张浒, 林玲, 杨爱玲, 苏蓉, 黄波.  冠脉搭桥术后静脉桥平滑肌细胞模型建立, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20241003
    [3] 顾晓会, 吕粉荣, 孙菊, 彭娅萍, 万丹丹.  利拉鲁肽联合二甲双胍对改善多囊卵巢综合征糖脂代谢及性激素水平有效性的荟萃分析, 昆明医科大学学报.
    [4] 张晔琳, 马丽娅, 彭旭晖, 杨禾丰, 佘睿.  hsa-let-7a-5p调控牙周膜干细胞增殖及凋亡, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231028
    [5] 张梁, 王保全, 雷喜锋, 王旭, 柯阳, 张玮.  miR-29c-3p/IGF1分子轴对肝星状细胞活化,增殖和凋亡的作用机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230926
    [6] 陈怡璇, 王琳, 夏秀宏, 彭在坤, 丁奕, 史润娇, 雷学芬.  自噬在肝细胞癌中的作用机制研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230416
    [7] 张莉, 赵熙, 赵华祥, 熊宝, 徐洁, 汤广平, 喻卓, 陈鹏.  卫茅碱对人血管内皮细胞及血管平滑肌细胞增殖、迁移及细胞周期的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230723
    [8] 杨诗媛, 张昊, 胡图强.  扁塑藤素通过调节自噬对口腔鳞状细胞癌细胞CAL-27增殖的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231024
    [9] 王保全, 张伟, 田园, 雷喜锋, 王旭.  miR-142-5p通过CCND1调控胆囊癌细胞的增殖和转移, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220223
    [10] 张玮, 王保全, 雷喜锋, 王旭, 张梁.  miR-125b-5p调控HK2抑制胆囊癌细胞增殖和糖酵解, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20221206
    [11] 廖周俊, 杨少华, 刘立鑫, 胡晟, 陈轶晖, 康强, 张小文.  AK4对肝内胆管癌细胞HUCCT1增殖、迁移的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220611
    [12] 杨兰, 贾霄, 姜奕彤, 崔琪, 刘光赐, 何颖红.  UBE2C基因沉默表达对人胃癌AGS细胞增殖和迁移的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210504
    [13] 薛国强, 卫欣欣, 姚娜, 赵文化.  二甲双胍通过调控PARP-1活性对2型糖尿病肾脏的保护作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210632
    [14] 魏东.  脆性位点基因WWOX调控人胆囊癌细胞的体外增殖效应, 昆明医科大学学报.
    [15] 贾楠楠.  Gnaq对SH-SY5Y细胞增殖的作用及机制, 昆明医科大学学报.
    [16] 刘立鑫.  二甲双胍对肝癌细胞HCCLM3生物学行为的影响, 昆明医科大学学报.
    [17] 潘艳丽.  吡格列酮对高糖诱导下血管内皮细胞凋亡的影响, 昆明医科大学学报.
    [18] 夏英杰.  SD大鼠髁状突颈部骨折对大鼠髁状突软骨细胞增殖与凋亡的影响, 昆明医科大学学报.
    [19] 武斌.  大豆苷元对人乳牙牙髓干细胞增殖和成骨分化的影响, 昆明医科大学学报.
    [20] 李雄.  氧自由基在血管紧张素Ⅱ诱导ECV304细胞增殖中的作用, 昆明医科大学学报.
  • 加载中
图(4)
计量
  • 文章访问数:  1818
  • HTML全文浏览量:  1206
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-23
  • 网络出版日期:  2023-09-12
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回