[1]
|
Rinella M E,Neuschwander-Tetri B A,Siddiqui M S,et al. AASLD practice guidance on the clinical assessment and management of nonalcoholic fatty liver disease[J]. Hepatology,2023,77(5):1797-1835. doi: 10.1097/HEP.0000000000000323
|
[2]
|
Cotter T G,Rinella M. Nonalcoholic fatty liver disease 2020: The state of the disease[J]. Gastroenterology,2020,158(7):1851-1864. doi: 10.1053/j.gastro.2020.01.052
|
[3]
|
Powell E E,Wong V W,Rinella M. Non-alcoholic fatty liver disease[J]. Lancet,2021,397(10290):2212-2224. doi: 10.1016/S0140-6736(20)32511-3
|
[4]
|
Younossi Z M,Golabi P,Paik J M,et al. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review[J]. Hepatology,2023,77(4):1335-1347. doi: 10.1097/HEP.0000000000000004
|
[5]
|
Riazi K,Azhari H,Charette J H,et al. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol,2022,7(9):851-861. doi: 10.1016/S2468-1253(22)00165-0
|
[6]
|
Li J,Zou B,Yeo Y H,et al. Prevalence,incidence,and outcome of non-alcoholic fatty liver disease in Asia,1999–2019: A systematic review and meta-analysis[J]. The Lancet Gastroenterology & Hepatology,2019,4(5):389-398.
|
[7]
|
Saliminejad K,Khorram Khorshid H R,Soleymani Fard S,et al. An overview of microRNAs: Biology,functions,therapeutics,and analysis methods[J]. J Cell Physiol,2019,234(5):5451-5465. doi: 10.1002/jcp.27486
|
[8]
|
Shi Y,Liu Z,Lin Q,et al. MiRNAs and cancer: Key link in diagnosis and therapy[J]. Genes (Basel),2021,12(8):1289-1302. doi: 10.3390/genes12081289
|
[9]
|
Feng Y,Li J,Zhang Y. Chemical knockdown of microRNA with small-molecule chimeras[J]. Chembiochem,2020,21(22):3180-3185. doi: 10.1002/cbic.202000287
|
[10]
|
Chen P S,Lin S C,Tsai S J. Complexity in regulating microRNA biogenesis in cancer[J]. Exp Biol Med (Maywood),2020,245(5):395-401. doi: 10.1177/1535370220907314
|
[11]
|
Hill M,Tran N. miRNA interplay: Mechanisms and consequences in cancer[J]. Dis Model Mech,2021,14(4):1-4. doi: 10.1242/dmm.047662
|
[12]
|
Bartel D P. Metazoan microRNAs[J]. Cell,2018,173(1):20-51. doi: 10.1016/j.cell.2018.03.006
|
[13]
|
Jie M,Feng T,Huang W,et al. Subcellular localization of miRNAs and implications in cellular homeostasis[J]. Genes (Basel),2021,12(6):856. doi: 10.3390/genes12060856
|
[14]
|
Arguello G,Balboa E,Arrese M,et al. Recent insights on the role of cholesterol in non-alcoholic fatty liver disease[J]. Biochim Biophys Acta,2015,1852(9):1765-1778. doi: 10.1016/j.bbadis.2015.05.015
|
[15]
|
Pang L,Liu K,Liu D,et al. Differential effects of reticulophagy and mitophagy on nonalcoholic fatty liver disease[J]. Cell Death Dis,2018,9(2):90. doi: 10.1038/s41419-017-0136-y
|
[16]
|
Teratani T, Tomita K, Suzuki T, et al. A high-cholesterol diet exacerbates liver fibrosis in mice via accumulation of free cholesterol in hepatic stellate cells[J]. Gastroenterology, 2012, 142(1): 152-164 e10
|
[17]
|
Pirola C J,Fernandez Gianotti T,Castano G O,et al. Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis[J]. Gut,2015,64(5):800-812. doi: 10.1136/gutjnl-2014-306996
|
[18]
|
Laudadio I,Manfroid I,Achouri Y,et al. A feedback loop between the liver-enriched transcription factor network and miR-122 controls hepatocyte differentiation[J]. Gastroenterology,2012,142(1):119-129. doi: 10.1053/j.gastro.2011.09.001
|
[19]
|
Becker P P,Rau M,Schmitt J,et al. Performance of serum microRNAs -122,-192 and -21 as biomarkers in Patients with non-alcoholic steatohepatitis[J]. PLoS One,2015,10(11):e0142661. doi: 10.1371/journal.pone.0142661
|
[20]
|
Esau C,Davis S,Murray S F,et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting[J]. Cell Metab,2006,3(2):87-98. doi: 10.1016/j.cmet.2006.01.005
|
[21]
|
Krutzfeldt J,Rajewsky N,Braich R,et al. Silencing of microRNAs in vivo with 'antagomirs'[J]. Nature,2005,438(7068):685-689. doi: 10.1038/nature04303
|
[22]
|
Vega-Badillo J,Gutierrez-Vidal R,Hernandez-Perez H A,et al. Hepatic miR-33a/miR-144 and their target gene ABCA1 are associated with steatohepatitis in morbidly obese subjects[J]. Liver Int,2016,36(9):1383-1391. doi: 10.1111/liv.13109
|
[23]
|
Wu H,Ng R,Chen X,et al. MicroRNA-21 is a potential link between non-alcoholic fatty liver disease and hepatocellular carcinoma via modulation of the HBP1-p53-Srebp1c pathway[J]. Gut,2016,65(11):1850-1860. doi: 10.1136/gutjnl-2014-308430
|
[24]
|
Rodrigues P M,Afonso M B,Simao A L,et al. miR-21 ablation and obeticholic acid ameliorate nonalcoholic steatohepatitis in mice[J]. Cell Death Dis,2017,8(4):e2748. doi: 10.1038/cddis.2017.172
|
[25]
|
Sun C,Huang F,Liu X,et al. miR-21 regulates triglyceride and cholesterol metabolism in non-alcoholic fatty liver disease by targeting HMGCR[J]. International Journal of Molecular Medicine,2015,35(3):847-853. doi: 10.3892/ijmm.2015.2076
|
[26]
|
Ahn J,Lee H,Jung C H,et al. Lycopene inhibits hepatic steatosis via microRNA-21-induced downregulation of fatty acid-binding protein 7 in mice fed a high-fat diet[J]. Mol Nutr Food Res,2012,56(11):1665-74. doi: 10.1002/mnfr.201200182
|
[27]
|
Yang Y,Guo J X,Shao Z Q. miR-21 targets and inhibits tumor suppressor gene PTEN to promote prostate cancer cell proliferation and invasion: An experimental study[J]. Asian Pac J Trop Med,2017,10(1):87-91. doi: 10.1016/j.apjtm.2016.09.011
|
[28]
|
Lin Y,Ding D,Huang Q,et al. Downregulation of miR-192 causes hepatic steatosis and lipid accumulation by inducing SREBF1: Novel mechanism for bisphenol A-triggered non-alcoholic fatty liver disease[J]. Biochim Biophys Acta Mol Cell Biol Lipids,2017,1862(9):869-882.
|
[29]
|
Borji M,Nourbakhsh M,Shafiee S M,et al. Down-regulation of SIRT1 expression by mir-23b contributes to lipid accumulation in HepG2 cells[J]. Biochem Genet,2019,57(4):507-521. doi: 10.1007/s10528-019-09905-5
|
[30]
|
Ali O,Darwish H A,Eldeib K M,et al. miR-26a Potentially contributes to the regulation of fatty acid and sterol metabolism in vitro human hepG2 cell model of nonalcoholic fatty liver disease[J]. Oxid Med Cell Longev,2018,2018(1):8515343.
|
[31]
|
Xu Y,Zalzala M,Xu J,et al. A metabolic stress-inducible miR-34a-HNF4alpha pathway regulates lipid and lipoprotein metabolism[J]. Nat Commun,2015,6(1):7466. doi: 10.1038/ncomms8466
|
[32]
|
Jia N,Lin X,Ma S,et al. Amelioration of hepatic steatosis is associated with modulation of gut microbiota and suppression of hepatic miR-34a in gynostemma pentaphylla (Thunb. ) makino treated mice[J]. Nutr Metab (Lond),2018,15(1):86. doi: 10.1186/s12986-018-0323-6
|
[33]
|
Zeng N,Huang R,Li N,et al. MiR-451a attenuates free fatty acids-mediated hepatocyte steatosis by targeting the thyroid hormone responsive spot 14 gene[J]. Mol Cell Endocrinol,2018,474(1):260-271.
|
[34]
|
Zhang T,Zhao X,Steer C J,et al. A negative feedback loop between microRNA-378 and Nrf1 promotes the development of hepatosteatosis in mice treated with a high fat diet[J]. Metabolism,2018,85(1):183-191.
|
[35]
|
Lei L,Zhou C,Yang X,et al. Down-regulation of microRNA-375 regulates adipokines and inhibits inflammatory cytokines by targeting AdipoR2 in non-alcoholic fatty liver disease[J]. Clin Exp Pharmacol Physiol,2018,45(8):819-831. doi: 10.1111/1440-1681.12940
|
[36]
|
Guo J,Dou L,Meng X,et al. Hepatic miR-291b-3p mediated glucose metabolism by directly targeting p65 to upregulate PTEN expression[J]. Sci Rep,2017,7(1):39899. doi: 10.1038/srep39899
|
[37]
|
Xu L,Li Y,Yin L,et al. miR-125a-5p ameliorates hepatic glycolipid metabolism disorder in type 2 diabetes mellitus through targeting of STAT3[J]. Theranostics,2018,8(20):5593-5609. doi: 10.7150/thno.27425
|
[38]
|
Jordan S D,Kruger M,Willmes D M,et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism[J]. Nat Cell Biol,2011,13(4):434-446. doi: 10.1038/ncb2211
|
[39]
|
Yang W M,Min K H,Lee W. Induction of miR-96 by dietary saturated fatty acids exacerbates hepatic insulin resistance through the suppression of INSR and IRS-1[J]. PLoS One,2016,11(12):e0169039. doi: 10.1371/journal.pone.0169039
|
[40]
|
Jampoka K,Muangpaisarn P,Khongnomnan K,et al. Serum miR-29a and miR-122 as potential biomarkers for non-alcoholic fatty liver disease (NAFLD)[J]. Microrna,2018,7(3):215-222. doi: 10.2174/2211536607666180531093302
|
[41]
|
Ramirez C M,Goedeke L,Rotllan N,et al. MicroRNA 33 regulates glucose metabolism[J]. Mol Cell Biol,2013,33(15):2891-2902. doi: 10.1128/MCB.00016-13
|
[42]
|
Garcia-Jacobo R E,Uresti-Rivera E E,Portales-Perez D P,et al. Circulating miR-146a,miR-34a and miR-375 in type 2 diabetes patients,pre-diabetic and normal-glycaemic individuals in relation to beta-cell function,insulin resistance and metabolic parameters[J]. Clin Exp Pharmacol Physiol,2019,46(12):1092-1100. doi: 10.1111/1440-1681.13147
|
[43]
|
Zhou M,Hou Y,Wu J,et al. miR-93-5p promotes insulin resistance to regulate type 2 diabetes progression in HepG2 cells by targeting HGF[J]. Mol Med Rep,2021,23(5):329. doi: 10.3892/mmr.2021.11968
|
[44]
|
Santos D,Porter-Gill P,Goode G,et al. Circulating microRNA levels differ in the early stages of insulin resistance in prepubertal children with obesity[J]. Life Sci,2023,312(1):121246.
|
[45]
|
Dai L L,Li S D,Ma Y C,et al. MicroRNA-30b regulates insulin sensitivity by targeting SERCA2b in non-alcoholic fatty liver disease[J]. Liver Int,2019,39(8):1504-1513. doi: 10.1111/liv.14067
|
[46]
|
Zhang C,Wang P,Li Y,et al. Role of microRNAs in the development of hepatocellular carcinoma in nonalcoholic fatty liver disease[J]. Anat Rec (Hoboken),2019,302(2):193-200. doi: 10.1002/ar.23954
|
[47]
|
Torres J L,Novo-Veleiro I,Manzanedo L,et al. Role of microRNAs in alcohol-induced liver disorders and non-alcoholic fatty liver disease[J]. World J Gastroenterol,2018,24(36):4104-4118. doi: 10.3748/wjg.v24.i36.4104
|
[48]
|
Wang X, He Y, Mackowiak B, et al. MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases[J]. Gut, 2021, 70(4): 784-795
|
[49]
|
Zhang Z, Moon R, Thorne J L, et al. NAFLD and vitamin D: Evidence for intersection of microRNA-regulated pathways[J]. Nutr Res Rev, 2021,36(1): 1-20
|
[50]
|
Serino M. Molecular paths linking metabolic diseases,gut microbiota dysbiosis and enterobacteria infections[J]. J Mol Biol,2018,430(5):581-590. doi: 10.1016/j.jmb.2018.01.010
|
[51]
|
Gjorgjieva M,Sobolewski C,Dolicka D,et al. miRNAs and NAFLD: From pathophysiology to therapy[J]. Gut,2019,68(11):2065-2079. doi: 10.1136/gutjnl-2018-318146
|
[52]
|
Xin S,Zhan Q,Chen X,et al. Efficacy of serum miRNA test as a non-invasive method to diagnose nonalcoholic steatohepatitis: A systematic review and meta-analysis[J]. BMC Gastroenterol,2020,20(1):186. doi: 10.1186/s12876-020-01334-8
|
[53]
|
Jonas W,Schurmann A. Genetic and epigenetic factors determining NAFLD risk[J]. Mol Metab,2021,50(1):101111.
|
[54]
|
Kiran S,Kumar V,Kumar S,et al. Adipocyte,immune cells,and miRNA crosstalk: A novel regulator of metabolic dysfunction and obesity[J]. Cells,2021,10(5):1004. doi: 10.3390/cells10051004
|
[55]
|
Shen Y,Cheng L,Xu M,et al. SGLT2 inhibitor empagliflozin downregulates miRNA-34a-5p and targets GREM2 to inactivate hepatic stellate cells and ameliorate non-alcoholic fatty liver disease-associated fibrosis[J]. Metabolism,2023,146(1):155657.
|
[56]
|
Kan Changez M I, Mubeen M, Zehra M, et al. Role of microRNA in non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH): A comprehensive review[J]. J Int Med Res, 2023, 51(9): 3000605231197058.
|