Prediction of Psoriasis and Potential Treatment of Traditional Chinese Medicine Based on Reverse Network Pharmacology Analysis
-
摘要:
目的 应用逆向网络药理学及分子对接技术研究银屑病发病机制。 方法 从genecards和NCBI数据库获取银屑病相关基因,取交集基因,构建PPI网络,确定核心差异基因,进行GO和KEGG富集分析,构建靶点信号通路网络图。利用TCMSP和symmap平台反向采集潜在治疗中药及相关活性成分,构建预测药物-活性成分网络图,筛选核心靶点和核心成分进行分子对接验证。 结果 获262个银屑病基因,GO、KEGG分析得多条生物条目及通路。结合PPI网络,确定7个关键基因。逆向收集20种中药和264种成分,构建网络图。分子对接验证7个基因和前5种成分。 结论 本研究通过分子对接验证白花蛇舌草、虎杖等中药及成分可调控IL1B、CXCL8等靶点,为中药组分治疗银屑病提供参考。 Abstract:Objective To study the pathogenesis of psoriasisand and to provide new research ideas and directions for the prevention and treatment of psoriasis. Methods Psoriasis-related genes were obtained from genecards and NCBI databases, and intersection genes were obtained. After PPI network constructed, core differential genes were determined. Based on GO and KEGG enrichment analysis, a target gene-signaling pathway network diagram was constructed. The TCMSP and symmap platforms were used to reversely collect potential therapeutic Chinese medicines and related active ingredients, construct a predicted drug-active ingredient network diagram, and screen core targets and core ingredients for molecular docking verification. Results 262 psoriasis genes were obtained, and multiple biological entries and pathways were analyzed by GO and KEGG. Combined with the PPI network, 7 key genes were identified. 20 kinds of traditional Chinese medicine and 264 kinds of ingredients were collected through reverse engineering to construct a network diagram. Molecular docking verified 7 genes and the first 5 components. Conclusion This study discovered potential drugs for the treatment of psoriasis, and verified, through molecular docking, that traditional Chinese medicines and ingredients such as Hedyotis diffusa and Polygonum cuspidatum can regulate IL1B, CXCL8 and other targets, providing a reference for traditional Chinese medicine components in the treatment of psoriasis. -
Key words:
- Psoriasis /
- Reverse network pharmacology /
- Molecular docking
-
表 1 潜在治疗药物分布
Table 1. Distribution of potential therapeutic drugs
基因 个数 药物 IL1B、IFNG、STAT3、STAT1、CXCL8、CXCL1、CCL2 7 高良姜、枸骨叶、虎杖、艾叶、白果、白花蛇舌草、穿心莲、鹅不食草、葛花、广枣、黄芪、前胡、麻黄、山豆根、山楂叶、鼠曲草、乌梅、仙鹤草、苎麻根 表 2 部分活性成分信息
Table 2. Partial active ingredient information
MOL ID 名称 度值 OB(%) DL MOL000098 槲皮素(quercetin) 18 46.43 0.28 MOL000358 β-谷甾醇(beta-sitosterol) 14 36.91 0.75 MOL000422 山柰酚(kaempferol) 12 41.88 0.24 MOL000449 豆甾醇(stigmasterol) 9 43.83 0.76 MOL000359 谷甾醇(sitosterol) 7 36.91 0.75 MOL000354 异鼠李素(isorhamnetin) 6 49.6 0.31 MOL000392 芒丙花素(formononetin) 5 69.67 0.21 MOL000492 绿茶多酚((+)-catechin) 5 54.83 0.24 表 3 核心靶点与核心活性成分分子对接结合能(kcal/mol)
Table 3. Molecular docking binding energy of core targets and core active ingredients (kcal/mol)
基因 成分 IL1B IFNG STAT1 STAT3 CXCL8 CXCL1 CCL2 quercetin −5.08 −4.01 −3.97 −4.03 −4.31 −5.12 −5.36 beta-sitosterol −5.57 −3.82 −4.95 −4.88 −5.44 −4.71 −6.93 kaempferol −5.61 −3.63 −4.06 −3.82 −4.44 −3.32 −6.54 stigmasterol −5.85 −4.07 −5.03 −4.20 −6.41 −4.28 −6.64 sitosterol −5.68 −4.32 −4.72 −3.85 −6.52 −3.14 −6.29 -
[1] 史玉玲. 中国银屑病诊疗指南(2018版)解读[J]. 同济大学学报(医学版),2019,40(3):265-267. [2] Korman N J. Management of psoriasis as a systemic disease: What is the evidence?[J]. British Journal of Dermatology,2020,182(4):840-848. doi: 10.1111/bjd.18245 [3] 常倩, 杨仕平. 银屑病治疗方法的研究进展[J]. 上海师范大学学报(自然科学版),2024,53(1):67-73. [4] 张丽,王苏容,王新,等. 银屑病患者外用药治疗知信行水平现状分析[J]. 交通医学,2023,37(3):314-316+321. [5] 曹爽,周妍妍,闫景东. 中医药调控银屑病相关信号通路研究进展[J]. 中国实验方剂学杂志,2021,27(15):243-250. [6] HAOJUN ZHUANG, XIAOMING WANG, MEILIANG GUO, et al. Identification of chemokines-related miRNAs as potential biomarkers in psoriasis based on integrated bioinformatics analysis[J]. Combinatorial chemistry & high throughput screening,2023,26(7):1400-1413. [7] 韦国旺,黄甫克,胡湘云,等. 基于网络药理学和分子对接分析车前草防治畜禽腹泻的作用机制[J]. 中国兽医杂志,2024,60(3):119-125. [8] 田雨,王乌云塔娜. 基于网络药理学及分子对接技术研究菝葜治疗银屑病的作用机制[J]. 内蒙古民族大学学报(自然科学版),2024,39(5):52-60. [9] 国家药典委员会. 中华人民共和国药典(一部)[M]. 北京: 中国医药科技出版社,2020:91-1902 [10] 钟赣生. 中药学[M]. 第4 版.北京:中国中医药出版社,2016:88-457. [11] 李云,刘天宇,袁恒杰,等. 基于网络药理学和实验验证探讨甘草防治非酒精性脂肪肝病及肥胖的作用机制[J]. 中草药,2023,54(15):4882-4894. [12] Pinzi L,Rastelli G. Molecular docking: shifting paradigms in drug discovery[J]. International Journal of Molecular Sciences,2019,20(18):4331-4337. doi: 10.3390/ijms20184331 [13] 惠东瑞,刘清民. 凉血消银汤治疗血热证型寻常型银屑病临床疗效及安全性[J]. 贵州医药,2023,47(8):1275-1276. doi: 10.3969/j.issn.1000-744X.2023.08.061 [14] Li X,Hou Y,Wang X,et al. To elucidate the inhibition of excessive autophagy of Rhodiola crenulata on exhaustive exercise-induced skeletal muscle injury by combined network pharmacology and molecular docking[J]. Biological and Pharmaceutical Bulletin,2020,43(2):296-305. doi: 10.1248/bpb.b19-00627 [15] 陈健, 陈启龙. 网络药理学在中医药研究中的现状及思考[J]. 上海中医药大学学报,2021,35(5):1-6+13. [16] 文昌晖, 张硕, 贾敏, 等. 消疕汤对血热风燥型银屑病患者血清IL-8、IL-10水平的影响[J]. 贵州医药,2019,43(2):196-198. [17] 程丽娜,宋蔚,闫春妮. IL-8及CXCR1、CXCR2在白内障晶状体上皮细胞中的表达及其意义[J]. 现代医学,2019,47(10):1197-1201. doi: 10.3969/j.issn.1671-7562.2019.10.004 [18] Schuster C,Huard A,Sirait‐Fischer E,et al. S1PR4‐dependent CCL2 production promotes macrophage recruitment in a murine psoriasis model[J]. European journal of immunology,2020,50(6):839-845. doi: 10.1002/eji.201948349 [19] Butturini E,Carcereri de Prati A,Mariotto S. Redox regulation of STAT1 and STAT3 signaling[J]. International Journal of Molecular Sciences,2020,21(19):7034. doi: 10.3390/ijms21197034 [20] 黄锦萍. 葫芦素Ⅰ对银屑病STAT3调控作用的研究进展[J]. 海南医学,2020,31(14):1872-1875. [21] Zaidi M R. The interferon-gamma paradox in cancer[J]. Journal of Interferon & Cytokine Research,2019,39(1):30-38. [22] 何谐. JAK-STAT信号通路与银屑病相关性的研究进展[J]. 临床皮肤科杂志,2023,52(7):436-439. [23] Ghoreschi K,Balato A,Enerbäck C,et al. Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis[J]. The Lancet,2021,397(10275):754-766. doi: 10.1016/S0140-6736(21)00184-7 [24] 陈广芳, 文昌晖. 基于GEO芯片探究槲皮素对银屑病外周血中性粒细胞的分子作用机制[J]. 西部中医药,2023,36(9):25-34. [25] 刘威良,姬昱,黄艾祥. β-谷甾醇的研究及开发进展[J]. 农产品加工,2019(1):77-79, 82. [26] 王建锋,曹宇,章纬,等. 清热凉血法治疗血热型银屑病的疗效及对血清P物质、血管内皮生长因子的影响[J]. 安徽中医药大学学报,2023,42(3):24-28. doi: 10.3969/j.issn.2095-7246.2023.03.006 [27] 李艳,杨文信,胡荣毅,等. 中药麻黄对寻常型银屑病小鼠血清IFN-γ、IL-17的影响[J]. 西南医科大学学报,2021,44(5):571-575. doi: 10.3969/j.issn.2096-3351.2021.05.023 [28] 何亚男,蔡翔,邱百怡,等. 穿心莲内酯调节cGAS-STING信号通路对银屑病小鼠的治疗作用[J]. 天津医药,2024,52(4):379-386. doi: 10.11958/20230914