留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MAPK1NRAS基因多态性与云南汉族人群宫颈上皮内瘤变的相关性

牛志鑫 汤丽华 史磊 洪超 姚宇峰 严志凌

牛志鑫, 汤丽华, 史磊, 洪超, 姚宇峰, 严志凌. MAPK1与NRAS基因多态性与云南汉族人群宫颈上皮内瘤变的相关性[J]. 昆明医科大学学报.
引用本文: 牛志鑫, 汤丽华, 史磊, 洪超, 姚宇峰, 严志凌. MAPK1NRAS基因多态性与云南汉族人群宫颈上皮内瘤变的相关性[J]. 昆明医科大学学报.
Zhixin NIU, Lihua TANG, Lei SHI, Chao HONG, Yufeng YAO, Zhiling YAN. Correlation of MAPK1 and NRAS Gene Polymorphisms with Cervical Intraepithelial Neoplasia in Yunnan Han Population[J]. Journal of Kunming Medical University.
Citation: Zhixin NIU, Lihua TANG, Lei SHI, Chao HONG, Yufeng YAO, Zhiling YAN. Correlation of MAPK1 and NRAS Gene Polymorphisms with Cervical Intraepithelial Neoplasia in Yunnan Han Population[J]. Journal of Kunming Medical University.

MAPK1NRAS基因多态性与云南汉族人群宫颈上皮内瘤变的相关性

基金项目: 国家自然科学基金资助项目(82103190);云南省基础研究计划基金资助项目(202201AY070001-139,202201AU070163)
详细信息
    作者简介:

    牛志鑫(1994~ ),女,河北张家口人,在读硕士研究生,主要从事肿瘤的免疫遗传学研究工作

    通讯作者:

    严志凌,E-mail:yanzhiling2021@126.com

  • 中图分类号: R711.74

Correlation of MAPK1 and NRAS Gene Polymorphisms with Cervical Intraepithelial Neoplasia in Yunnan Han Population

  • 摘要:   目的  探讨在云南汉族人群中NRAS基因与MAPK1基因rs14804和rs9340多态性位点与宫颈上皮内瘤变(cervical intraepithelial neoplasia,CIN)易感性的相关性。  方法  随机选取2017年5月至2019年10月昆明医科大学第三附属医院416例CIN患者和983例健康对照个体,通过TaqMan探针法对NRAS基因与MAPK1基因的SNPs位点(rs14804和rs9340)进行基因分型,分析2个SNPs位点与云南汉族人群CIN发生风险的相关性。  结果  MAPK1基因的SNP位点rs9340等位基因(P = 0.008)和基因型(P = 0.002)在CIN组与对照组的分布频率差异具有统计学意义,等位基因A可能与更高的CIN发生风险相关(OR = 1.28,95%CI 1.07 ~ 1.54),尤其是低年龄组(≤ 50岁)人群的CIN风险相关(OR = 1.35,95%CI 1.09 ~ 1.67)。  结论  MAPK1基因的SNP位点rs9340可能与云南汉族人群CIN发生风险具有相关性。
  • 图  1  rs9340位点导致所在区域互补结合的miRNA发生改变

    Figure  1.  The rs9340 causes the different miRNA binding pattern

    表  1  选取病例的临床特征[($ \bar{x} \pm s $),岁]

    Table  1.   The clinical characteristics of the subjects enrolled in this study [($ \bar{x} \pm s $),years old]

    分组 临床分期/年龄分层 n 年龄分布 t P
    对照组 高龄组 314 56.21 ± 3.85
    低龄组 718 41.91 ± 6.86
    总计 961 45.77 ± 8.87
    CIN组 CIN2 51 45.59 ± 10.13 −1.535 0.903
    CIN3 365 44.92 ± 9.48 −2.923 0.137
    高龄组 102 58.09 ± 6.09 −3.523 4.8×10−4*
    低龄组 265 40.75 ± 5.92 −2.771 0.006*
    总计 416 45.00 ± 9.55 −1.446 0.148
      *P < 0.05。
    下载: 导出CSV

    表  2  2个SNPs位点在CIN和对照组间等位基因和基因型分布比较[n(%)]

    Table  2.   The comparison of allelic and genotypic distribution of the two SNPs between CIN and control groups[n(%)]

    SNPs等位基因/基因型对照组CIN组χ2POR(95%CI
    rs14804A49(2.50)22(2.64)0.0550.8151.06(0.64 ~ 1.77)
    G1917(97.50)810(97.36)
    A/A0(0.00)1(0.24)2.3820.304
    A/G49(4.98)20(4.81)
    G/G934(95.02)395(94.95)
    HWE,P0.4230.177
    rs9340A456(23.19)232(27.88)6.9360.008*1.28(1.07 ~ 1.54)
    G1510(76.81)600(72.12)
    A/A55(5.60)22(5.29)12.5680.002*
    A/G346(35.20)188(45.19)
    G/G582(59.20)206(49.52)
    HWE,P0.7050.012
      *P < 0.025(统计学结果经Bonferroni校正,n = 2)。
    下载: 导出CSV

    表  3  高龄组和低龄组中rs9340位点与CIN的相关性分析[n(%)]

    Table  3.   The association of rs9340 with CIN in different age groups [n(%)]

    年龄分层 等位基因/基因型 对照组 CIN组 χ2 P OR(95%CI
    高年龄组 A 131(24.72) 55(26.96) 0.108 0.743 1.07(0.73 ~ 1.55)
    G 399(75.28) 149(73.04)
    A/A 17(6.42) 4(3.92) 0.814 0.367 0.42(0.13 ~ 1.38)
    A/G 97(36.60) 47(46.08) 2.046 0.212 0.58(0.18 ~ 1.88)
    G/G 151(56.98) 51(50.00) 3.102 0.153
    低年龄组 A 325(22.63) 177(28.18) 7.4 0.007* 1.35(1.09 ~ 1.67)
    G 1111(77.37) 451(71.82)
    A/A 38(5.29) 18(5.73) 10.37 0.001* 1.59(1.19 ~ 2.08)
    A/G 249(34.69) 141(44.90) 0.898 0.343 1.33(0.74 ~ 2.38)
    G/G 431(60.02) 155(49.37) 10.453 0.005
      *P < 0.05。
    下载: 导出CSV

    表  4  rs9340位点与CIN分期进展的相关性[n(%)]

    Table  4.   Correlation of rs9340 locus polymorphism with different CIN stages [n(%)]

    等位基因此/基因型CIN2组CIN3组χ2POR(95%CI
    A22(21.57)210(28.77)2.3230.1270.68(0.41 ~ 1.12)
    G80(78.43)520(71.23)
    A/A1(1.96)21(5.75)1.5150.2180.28(0.04 ~ 2.14)
    A/G20(39.22)168(46.03)1.3810.240.70(0.38~ 1.27)
    G/G30(58.82)176(48.22)0b
      b该项为参照项,因此设置为0;*P < 0.05。
    下载: 导出CSV

    表  5  rs9340位点对MAPK1基因3'UTR区域miRNA互补结合的影响

    Table  5.   The effect of rs9340 on miRNA binding to the 3'UTR of MAPK1

    miRNA(miR)靶基因新增/失去位点起始位置位点终止位置在宫颈癌中发挥的作用
    hsa-miR-153-3p新增2176105921761065circ_0005576/miR-153-3p/KIF20A通路驱动
    宫颈癌的增殖、迁移和侵袭[25]
    hsa-miR-448新增2176105921761066参与miRNA介导的转录后基因沉默
    hsa-miR-210-3p失去2176105721761064宫颈癌组织中的miRNA-210-3p水平高于
    正常宫颈组织和CIN组织[26]
    下载: 导出CSV
  • [1] Bruni L A G,Serrano B,Mena M,et al. Human papillomavirus and related diseases in the world [R]. Barcelona,Spain,2023: ICO/IARC Information Centre on HPV and Cancer (HPV Information Centre),Summary Report 22 October 2021.
    [2] 冯明月,闫萍. 宫颈上皮内瘤变诊治现状[J]. 河北医科大学学报,2020,41(4):480-483.
    [3] Schiffman M, Castle P E, Jeronimo J, et al. Human papillomavirus and cervical cancer[J]. Lancet (London, England),2007,370(9590):890-907.
    [4] Chen D,Cui T,Ek W E,et al. Analysis of the genetic architecture of susceptibility to cervical cancer indicates that common SNPs explain a large proportion of the heritability[J]. Carcinogenesis,2015,36(9):992-998. doi: 10.1093/carcin/bgv083
    [5] Vink J M,Van Kemenade F J,Meijer C J,et al. Cervix smear abnormalities: Linking pathology data in female twins,their mothers and sisters [J]. European Journal of Human Genetics : EJHG,2011,19(1): 108-111.
    [6] Zhang X,Zhang L,Tian C,et al. Genetic variants and risk of cervical cancer: Epidemiological evidence,meta-analysis and research review[J]. BJOG,2014,121(6):664-674. doi: 10.1111/1471-0528.12638
    [7] Hatzivassiliou G,Song K,Yen I,et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth[J]. Nature,2010,464(7287):431-435. doi: 10.1038/nature08833
    [8] Yuan J,Dong X,Yap J,et al. The MAPK and AMPK signalings: Interplay and implication in targeted cancer therapy[J]. Journal of Hematology & Oncology,2020,13(1):113.
    [9] Xie G,Zhu A,Gu X. Mitogen-activated protein kinase inhibition-induced modulation of epidermal growth factor receptor signaling in human head and neck squamous cell carcinoma[J]. Head & Neck,2021,43(6):1721-1729.
    [10] Zhou G,Yang J,Song P. Correlation of ERK/MAPK signaling pathway with proliferation and apoptosis of colon cancer cells[J]. Oncology Letters,2019,17(2):2266-2270.
    [11] Bartholomeusz C,Gonzalez-Angulo A M,Liu P,et al. High ERK protein expression levels correlate with shorter survival in triple-negative breast cancer patients[J]. The Oncologist,2012,17(6):766-774. doi: 10.1634/theoncologist.2011-0377
    [12] Rauen K A. Defining RASopathy[J]. Dis Model Mech,2022,15(2):dmm049344. doi: 10.1242/dmm.049344
    [13] Yan Y,Gao Z,Han H,et al. NRAS expression is associated with prognosis and tumor immune microenvironment in lung adenocarcinoma[J]. J Cancer Res Clin Oncol,2022,148(3):565-575. doi: 10.1007/s00432-021-03842-w
    [14] Wang Y,Guo Z,Tian Y,et al. MAPK1 promotes the metastasis and invasion of gastric cancer as a bidirectional transcription factor[J]. BMC Cancer,2023,23(1):959. doi: 10.1186/s12885-023-11480-3
    [15] Harada G,Yang S R,Cocco E,et al. Rare molecular subtypes of lung cancer[J]. Nature Reviews Clinical Oncology,2023,20(4):229-249. doi: 10.1038/s41571-023-00733-6
    [16] Cicenas J,Tamosaitis L,Kvederaviciute K,et al. KRAS,NRAS and BRAF mutations in colorectal cancer and melanoma[J]. Medical Oncology (Northwood,London,England),2017,34(2):26. doi: 10.1007/s12032-016-0879-9
    [17] Ekedahl H, Cirenajwis H, Harbst K, et al. The clinical significance of BRAF and NRAS mutations in a clinic-based metastatic melanoma cohort[J]. Br J Dermatol,2013,169(5):1049-1055.
    [18] Emrick M A,Hoofnagle A N,Miller A S,et al. Constitutive activation of extracellular signal-regulated kinase 2 by synergistic point mutations[J]. The Journal of Biological Chemistry,2001,276(49):46469-46479. doi: 10.1074/jbc.M107708200
    [19] Ojesina A I,Lichtenstein L,Freeman S S,et al. Landscape of genomic alterations in cervical carcinomas[J]. Nature,2014,506(7488):371-375. doi: 10.1038/nature12881
    [20] Insodaite R,Smalinskiene A,Liutkevicius V,et al. Associations of polymorphisms localized in the 3'UTR regions of the KRAS,NRAS,MAPK1 genes with laryngeal squamous cell carcinoma[J]. Genes,2021,12(11):1679. doi: 10.3390/genes12111679
    [21] 国家癌症中心,国家肿瘤质控中心宫颈癌质控专家委员会. 中国宫颈癌规范诊疗质量控制指标(2022版)[J]. 中华肿瘤杂志,2022,44(7):615-622.
    [22] 中华人民共和国国家卫生和计划生育委员会. 宫颈癌及癌前病变规范化诊疗指南(试行)[J]. 中国医学前沿杂志(电子版),2013,5(8):40-49.
    [23] Bhatla N,Aoki D,Sharma D N,et al. Cancer of the cervix uteri[J]. International Journal of Gynecology & amp; Obstetrics,2018,143(S2):22-36.
    [24] 中华医学会妇产科学分会绝经学组. 中国绝经管理与绝经激素治疗指南2023版[J]. 中华妇产科杂志,2023,58(1):4-21.
    [25] Ma H,Tian T,Liu X,et al. Upregulated circ_0005576 facilitates cervical cancer progression via the miR-153/KIF20A axis[J]. Biomed Pharmacother,2019(10):109311. doi: 10.1016/j.biopha.2019.109311
    [26] Shao M X,Qu A Z,Wang Y Q,et al. Expression level of miRNA-210-3p in cervical cancer and its prognostic potential[J]. Eur Rev Med Pharmacol Sci,2020,24(12):6583-6588.
    [27] Bos J L. The ras gene family and human carcinogenesis[J]. Mutation Research,1988,195(3):255-271. doi: 10.1016/0165-1110(88)90004-8
    [28] Guin S,Theodorescu D. The RAS-RAL axis in cancer: Evidence for mutation-specific selectivity in non-small cell lung cancer[J]. Acta Pharmacologica Sinica,2015,36(3):291-297. doi: 10.1038/aps.2014.129
    [29] Lanfredini S,Thapa A,O'neill E. RAS in pancreatic cancer[J]. Biochemical Society Transactions,2019,47(4):961-972. doi: 10.1042/BST20170521
    [30] Afrăsânie V A,Marinca M V,Alexa-Stratulat T,et al. KRAS,NRAS,BRAF,HER2 and microsatellite instability in metastatic colorectal cancer - practical implications for the clinician[J]. Radiology and Oncology,2019,53(3):265-274. doi: 10.2478/raon-2019-0033
    [31] Li S,Balmain A,Counter C M. A model for RAS mutation patterns in cancers: Finding the sweet spot[J]. Nature Reviews Cancer,2018,18(12):767-777. doi: 10.1038/s41568-018-0076-6
    [32] Jakob J A,Bassett R L J r,Ng C S,et al. NRAS mutation status is an independent prognostic factor in metastatic melanoma[J]. Cancer,2012,118(16):4014-4023. doi: 10.1002/cncr.26724
    [33] Schirripa M,Cremolini C,Loupakis F,et al. Role of NRAS mutations as prognostic and predictive markers in metastatic colorectal cancer[J]. International Journal of Cancer,2015,136(1):83-90. doi: 10.1002/ijc.28955
    [34] Murphy B M, Terrell E M, Chirasani V R, et al. Enhanced BRAF engagement by NRAS mutants capable of promoting melanoma initiation[J]. Nat Commun,2022,13(1):3153.
    [35] Fu W,Zhuo Z,Hua R X,et al. Association of KRAS and NRAS gene polymorphisms with Wilms tumor risk: A four-center case-control study[J]. Aging,2019,11(5):1551-1563. doi: 10.18632/aging.101855
    [36] Alessandro L,Low K E,Abushelaibi A,et al. Identification of NRAS diagnostic biomarkers and drug targets for endometrial cancer-an integrated in silico approach[J]. International Journal of Molecular Sciences,2022,23(22):14285. doi: 10.3390/ijms232214285
    [37] Jin M,Li Z,Sun Y,et al. Association analysis between the interaction of RAS family genes mutations and papillary thyroid carcinoma in the Han Chinese population[J]. International Journal of Medical Sciences,2021,18(2):441-447. doi: 10.7150/ijms.50026
    [38] Li S,Ma Y M,Zheng P S,et al. GDF15 promotes the proliferation of cervical cancer cells by phosphorylating AKT1 and Erk1/2 through the receptor ErbB2 [J]. Journal of Experimental & Clinical Cancer Research : CR,2018,37(1): 80.
    [39] Yan Z,Ohuchida K,Fei S,et al. Inhibition of ERK1/2 in cancer-associated pancreatic stellate cells suppresses cancer-stromal interaction and metastasis [J]. Journal of Experimental & Clinical Cancer Research : CR,2019,38(1): 221.
    [40] Deng R,Zhang H L,Huang J H,et al. MAPK1/3 kinase-dependent ULK1 degradation attenuates mitophagy and promotes breast cancer bone metastasis[J]. Autophagy,2021,17(10):3011-3029. doi: 10.1080/15548627.2020.1850609
    [41] Wills C, Watts K, Maughan TS, et al. Germline variation in RASAL2 may predict survival in patients with RAS-activated colorectal cancer[J]. Genes Chromosomes Cancer,2023,62(6):332-341.
    [42] Campbell J D,Alexandrov A,Kim J,et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas[J]. Nature Genetics,2016,48(6):607-616. doi: 10.1038/ng.3564
    [43] Santos M,Lima L,Carvalho S,et al. The impact of BDNF,NTRK2,NGFR,CREB1,GSK3B,AKT,MAPK1,MTOR,PTEN,ARC,and SYN1 genetic polymorphisms in antidepressant treatment response phenotypes[J]. International Journal of Molecular Sciences,2023,24(7):6758. doi: 10.3390/ijms24076758
    [44] Zhu Y, Yang T, Duan J, et al. MALAT1/miR-15b-5p/MAPK1 mediates endothelial progenitor cells autophagy and affects coronary atherosclerotic heart disease via mTOR signaling pathway[J]. Aging,2019,11(4):1089-109.
    [45] Guney G,Taşkın M I,Sener N,et al. The role of ERK-1 and ERK-2 gene polymorphisms in PCOS pathogenesis [J]. Reproductive Biology and Endocrinology : RB&E,2022,20(1): 95.
    [46] Wei H,Ke H L,Lin J,et al. MicroRNA target site polymorphisms in the VHL-HIF1α pathway predict renal cell carcinoma risk[J]. Molecular Carcinogenesis,2014,53(1):1-7. doi: 10.1002/mc.21917
    [47] Guo N,Zhang N,Yan L,et al. Correlation between genetic polymorphisms within the MAPK1/HIF-1/HO-1 signaling pathway and risk or prognosis of perimenopausal coronary artery disease[J]. Clinical Cardiology,2017,40(8):597-604. doi: 10.1002/clc.22708
  • [1] 郭妮, 张承, 洪超, 刘伟鹏, 姚宇峰, 严志凌.  KRAS基因3′UTR多态性与云南汉族人群宫颈癌及宫颈上皮内瘤变的相关性, 昆明医科大学学报. 2024, 45(2): 14-22. doi: 10.12259/j.issn.2095-610X.S20240203
    [2] 洪超, 向旭东, 李盈甫, 曹杨, 陈雪雅, 李帅, 邢安灏, 林牧, 马千里.  ERK1/2信号通路基因3'UTR多态性与非小细胞肺癌的相关性, 昆明医科大学学报. 2024, 45(3): 7-17. doi: 10.12259/j.issn.2095-610X.S20240302
    [3] 陆小华, 袁洪新.  BTLA、CTLA-4基因多态性与肝癌TACE联合靶向治疗疗效及预后相关性, 昆明医科大学学报. 2023, 44(9): 126-135. doi: 10.12259/j.issn.2095-610X.S20230927
    [4] 程甜甜, 尹文卅, 王佳, 卢玉梅, 陈炫羽, 聂胜洁, 刘林林.  TMTC1基因多态性与精神分裂症的关联性, 昆明医科大学学报. 2023, 44(10): 161-167. doi: 10.12259/j.issn.2095-610X.S20231014
    [5] 师雨晗, 李菁, 刘舒媛, 赵婷, 杨净思, 史荔, 梁疆莉.  壮族人群ERAP基因多态性与脊灰疫苗序贯免疫诱导的抗体应答的相关性分析, 昆明医科大学学报. 2023, 44(7): 22-28. doi: 10.12259/j.issn.2095-610X.S20230711
    [6] 伍蓉霜, 彭江丽, 陈永刚, 陈洁, 马国伟, 李先蕊, 李谢, 余春红.  SLC2A9基因单核苷酸多态性与吡嗪酰胺致高尿酸血症易感性关系, 昆明医科大学学报. 2023, 44(4): 40-47. doi: 10.12259/j.issn.2095-610X.S20230409
    [7] 李抒瑾, 杨艳飞, 苏敏, 凌昱, 饶艳琼, 崔继华.  儿童注意缺陷多动障碍共病情绪问题的单核苷酸多态性研究, 昆明医科大学学报. 2023, 44(4): 139-147. doi: 10.12259/j.issn.2095-610X.S20230420
    [8] 梁燕, 王磊, 雷鸣, 陈本超, 孙萍, 李帅, 刘莉, 王倩蓉, 廖曼霖, 马千里.  KRAS基因多态性与云南汉族人群非小细胞肺癌的相关性分析, 昆明医科大学学报. 2023, 44(2): 52-60. doi: 10.12259/j.issn.2095-610X.S20230210
    [9] 马燕粉, 胡健, 蔡德佩, 乔永峰, 王晓琴.  3137例体检人群血清GGT水平和血脂指标的相关性研究, 昆明医科大学学报. 2022, 43(10): 115-121. doi: 10.12259/j.issn.2095-610X.S20221001
    [10] 王娟娟, 陈雨青, 邓茜, 高健.  心肌酶谱与儿童1型糖尿病酮症酸中毒严重程度的相关性, 昆明医科大学学报. 2021, 42(1): 147-151. doi: 10.12259/j.issn.2095-610X.S20210129
    [11] 阮小荟, 向茜, 王玉明, 周治含, 张弦, 郭燕, 杨晓瑞.  维生素D受体基因Bg1I、Cdx-2位点多态性与桥本氏甲状腺炎的相关性, 昆明医科大学学报. 2021, 42(8): 132-139. doi: 10.12259/j.issn.2095-610X.S20210824
    [12] 李东云, 冮顺奎, 李捷, 张明星, 李雷.  ABCG2、SLC2A9、SLC17A3和 PRKG2基因单核苷酸位点多态性与哈尼族人群痛风的关系, 昆明医科大学学报. 2021, 42(3): 54-60. doi: 10.12259/j.issn.2095-610X.S20210320
    [13] 杨佳, 李娅娴, 王莹莹, 肖琳, 李传印, 谭芳, 马千里, 刘舒媛.  云南汉族人群mircoRNA-149、mircoRNA-219、mircoRNA-let-7基因多态性与非小细胞肺癌发生和发展的相关性, 昆明医科大学学报. 2021, 42(10): 22-28. doi: 10.12259/j.issn.2095-610X.S20211037
    [14] 向茜.  维生素D受体基因FokI位点单核苷酸多态性与糖尿病肾病的相关性, 昆明医科大学学报. 2016, 37(04): -.
    [15] 刘城秀.  云南汉族人群TNF-α基因和ALCAM基因多态性与HCV慢性感染的相关性, 昆明医科大学学报. 2016, 37(05): -.
    [16] 刘丽丽.  染色体9p21单核苷酸多态性与冠心病/心肌梗死相关性的研究进展, 昆明医科大学学报. 2015, 36(08): -1.
    [17] 戴书颖.  IL-4基因启动子SNP-1098T>G和-590C>T多态性与云南汉族人群HCV慢性感染的相关性研究, 昆明医科大学学报. 2015, 36(03): -1.
    [18] 李莹.  云南汉族人群IL-10基因启动子多态性与HCV慢性感染的相关性研究, 昆明医科大学学报. 2015, 36(01): -1.
    [19] 赵金友.  云南省城市空巢老人孤独状况与生命质量相关性分析, 昆明医科大学学报. 2014, 35(07): -.
    [20] 杨小蕾.  STAT4基因单核苷酸多态性与云南汉族人群SLE发病的相关性研究, 昆明医科大学学报. 2013, 34(06): -.
  • 加载中
图(1) / 表(5)
计量
  • 文章访问数:  292
  • HTML全文浏览量:  126
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-16
  • 网络出版日期:  2024-04-29

目录

    /

    返回文章
    返回