留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

绝经后T2DM患者炎症因子与骨密度和β-CTX的相关性及诊断效能分析

张凯歌 李若楠 陈家林 冯德萍 刘宇

张凯歌, 李若楠, 陈家林, 冯德萍, 刘宇. 绝经后T2DM患者炎症因子与骨密度和β-CTX的相关性及诊断效能分析[J]. 昆明医科大学学报.
引用本文: 张凯歌, 李若楠, 陈家林, 冯德萍, 刘宇. 绝经后T2DM患者炎症因子与骨密度和β-CTX的相关性及诊断效能分析[J]. 昆明医科大学学报.
Kaige ZHANG, Ruonan LI, Jialin CHEN, Deping FENG, Yu LIU. Correlation and Diagnostic Performance of Inflammatory Cytokines in Relation to Bone Mineral Density and β-CTX in Postmenopausal Women with Type 2 Diabetes Mellitus[J]. Journal of Kunming Medical University.
Citation: Kaige ZHANG, Ruonan LI, Jialin CHEN, Deping FENG, Yu LIU. Correlation and Diagnostic Performance of Inflammatory Cytokines in Relation to Bone Mineral Density and β-CTX in Postmenopausal Women with Type 2 Diabetes Mellitus[J]. Journal of Kunming Medical University.

绝经后T2DM患者炎症因子与骨密度和β-CTX的相关性及诊断效能分析

基金项目: 云南省教育厅科学研究基金(2024Y930);云南省科技计划项目(202001BA070001-213)
详细信息
    作者简介:

    张凯歌(1998~),女,河南洛阳人,在读硕士研究生,主要从事内分泌与代谢性疾病工作

    通讯作者:

    李若楠,E-mail:13112527516@qq.com

  • 中图分类号: R587.1

Correlation and Diagnostic Performance of Inflammatory Cytokines in Relation to Bone Mineral Density and β-CTX in Postmenopausal Women with Type 2 Diabetes Mellitus

  • 摘要:   目的   分析绝经后2型糖尿病(type 2 diabetes mellitus,T2DM)患者炎症因子与骨密度(bone mineral density,BMD)、I型胶原C末端交联肽(β-C-terminal telopeptide of type I collagen,β-CTX)之间的相关性,评估炎症因子在绝经后T2DM合并骨质疏松症(osteoporosis,OP)诊断中的效能。  方法   筛选了2023年10月1日至2024年8月31日期间在云南省第三人民医院内分泌科住院的538例绝经后T2DM患者,最终纳入181例患者作为研究对象。根据骨密度测定结果,将其分为骨量减少组(共86例,-2.5<T值<-1.0)和骨质疏松组(共95例,T值≤-2.5)。收集并记录了患者的人口学指标、炎症相关指标、骨代谢指标和其他临床指标。  结果   (1)比较两组间年龄、T2DM病程、体质指数(body mass index,BMI)、C反应蛋白(C-reactive protein,CRP)、白介素-6 (interleukin-6,IL-6)、中性粒细胞与淋巴细胞比值(neutrophil-to-lymphocyte ratio,NLR)、单核细胞与淋巴细胞比值(monocyte-to-lymphocyte ratio,MLR)、全身免疫炎症指数(systemic immune-inflammation index,SII)、β-CTX、甲状旁腺激素(parathyroid hormone,PTH)、各部位BMD值差异有统计学意义(P < 0.05);(2)Spearman相关性分析结果显示,CRP、IL-6、NLR、MLR、SII与骨密度呈负相关性(P < 0.05),在骨质疏松组中CRP、IL-6与β-CTX呈正相关(P < 0.05);(3)多因素二元Logistic回归分析显示,CRP、IL-6、SII、年龄、β-CTX是患者发生OP的独立危险因素(OR > 1,B > 0),而BMI是发生OP的独立保护因素(OR < 1,B < 0);(4)ROC曲线分析显示,CRP、IL-6、NLR、MLR、SII对绝经后T2DM合并OP均具有诊断效能,其中CRP、IL-6和SII联合检测模型的诊断效能最高。  结论   炎症因子与骨密度、β-CTX存在相关性,且对诊断绝经后T2DM患者合并OP有预测价值。
  • 图  1  ROC工作曲线

    Figure  1.  ROC curve graph

    表  1  两组患者一般临床数据对比 [M(P25P75)/n(%)]

    Table  1.   Comparative analysis of general clinical data between patient groups [M(P25P75)/n(%)]

    项目 骨量减少组(n=86) 骨质疏松组(n=95) Z/χ2 P
    年龄(岁) 66(56,71) 70(63,74) −3.445 <0.001*
    绝经年龄(岁) 50(50,52) 50(49,52) −0.095 0.873
    T2DM病程(年) 5.5(2,13.25) 10(4,19) −2.529 0.011*
    BMI(kg/m2 24.46(23.01,26.36) 22.9(21.48,25.24) −3.071 0.002*
    HbA1c(%) 8.13(6.96,10.67) 8.45(7.03,10.06) −0.232 0.817
    合并疾病情况 55(64) 64(67.4) 0.234 0.629
      *P < 0.05。
    下载: 导出CSV

    表  2  两组患者炎症指标、骨代谢指标及骨密度值对比 [M(P25P75)/($\bar x \pm s $)]

    Table  2.   Comparison of inflammatory markers,bone metabolism indices,and bone density values between patient groups[M(P25P75)/($\bar x \pm s $)]

    指标 骨量减少组(n=86) 骨质疏松组(n=95) Z/T P
    CRP (mg/L) 0.98(0.32,1.70) 2.01(1.09,3.43) −5.098 <0.001*
    IL-6(pg/mL) 1.80(1.39,3.03) 3.82(2.03,6.38) −5.908 <0.001*
    NLR 1.51(1.02,2.04) 1.78(1.36,2.53) −2.996 0.003*
    MLR 0.14(0.11,0.18) 0.16(0.13,0.21) −2.466 0.014*
    PLR 98.26(74.22,127.84) 104.30(81.16,144.90) −1.804 0.071
    SII 302.70(217.72,440.01) 377.90(268.80,601.68) −3.034 0.002*
    β-CTX (ng/mL) 0.37(0.27,0.50) 0.59(0.46,0.73) −6.703 <0.001*
    25(OH)VD(nmol/L) 69.20(57.14,88.95) 66.67(52.47,78.61) −1.572 0.116
    PTH(pmol/L) 6.06(4.28,7.76) 7.23(5.32,9.29) −2.937 0.003*
    L1-L4 BMD(g/cm2 1.040 ± 0.108 0.868 ± 0.127 9.891 <0.001*
    左侧股骨颈BMD值(g/cm2 0.827 ± 0.077 0.690 ± 0.092 10.852 <0.001*
    右侧股骨颈BMD值(g/cm2 0.823 ± 0.071 0.691 ± 0.090 11.018 <0.001*
    左髋关节全部BMD值(g/cm2 0.910 ± 0.079 0.759 ± 0.102 11.153 <0.001*
    右髋关节全部BMD值(g/cm2 0.914 ± 0.082 0.762 ± 0.103 10.988 <0.001*
      *P < 0.05。
    下载: 导出CSV

    表  3  两组患者炎症因子与骨密度、β-CTX的相关性

    Table  3.   Correlation between inflammatory factors,bone density,and β-CTX in patient groups

    指标 骨密度分级(n=181)
    (1:骨量减少;2:骨质疏松)
    β-CTX
    骨量减少组(n=86) 骨质疏松组(n=95)
    r P r P r P
    CRP 0.380 <0.001* −0.032 0.767 0.222 0.031*
    IL-6 0.440 <0.001* −0.057 0.604 0.378 <0.001*
    NLR 0.223 0.003* −0.098 0.370 0.016 0.879
    MLR 0.184 0.013* −0.144 0.186 0.050 0.632
    PLR 0.134 0.071 0.102 0.351 −0.109 0.295
    SII 0.226 0.002* −0.057 0.600 0.026 0.801
      *P < 0.05。
    下载: 导出CSV

    表  4  两组患者骨质疏松影响因素的多因素二元Logistic回归分析

    Table  4.   Multivariate binary logistic regression of osteoporosis risk factors in two patient groups

    因变量 自变量 B OR 95%CI P
    是否发生
    骨质疏松
    CRP 0.283 1.327 (1.005-1.754) 0.046*
    IL-6 0.302 1.352 (1.045-1.749) 0.022*
    NLR −0.462 0.630 (0.220-1.806) 0.390
    MLR×100 −0.047 0.954 (0.867-1.050) 0.339
    SII 0.004 1.004 (1.000-1.007) 0.035*
    年龄 0.086 1.090 (1.024-1.160) 0.007*
    T2DM病程 0.040 1.041 (0.977-1.109) 0.220
    BMI值 −0.209 0.811 (0.706-0.932) 0.003*
    β-CTX×100 0.056 1.058 (1.031-1.085) <0.001*
    PTH 0.118 1.125 (0.957-1.322) 0.153
      * P < 0.05。
    下载: 导出CSV

    表  5  炎症因子对绝经后T2DM合并OP的诊断效能分析

    Table  5.   Diagnostic efficacy of inflammatory factors for postmenopausal T2DM with osteoporosis

    指标 AUC 约登指数 临界值 灵敏度 特异度 95%CI P
    CRP 0.720 0.344 2.060 0.495 0.849 (0.646-0.793) <0.001*
    IL-6 0.754 0.435 3.780 0.505 0.930 (0.684-0.824) <0.001*
    NLR 0.629 0.207 2.162 0.347 0.860 (0.548-0.710) 0.003*
    MLR 0.606 0.242 0.130 0.789 0.453 (0.523-0.689) 0.014*
    SII 0.631 0.202 325.851 0.632 0.570 (0.550-0.711) 0.002*
    CRP+IL-6+SII 0.799 0.504 0.569 0.632 0.872 (0.735-0.863) <0.001*
      *P < 0.05。
    下载: 导出CSV
  • [1] Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology of type 2 diabetes mellitus[J]. International Journal of Molecular Sciences, 2020, 21(17): 6275. doi: 10.3390/ijms21176275
    [2] Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Research and Clinical Practice, 2022, 183(1): 109119. doi: 10.1016/j.diabres.2021.109119
    [3] Li Y, Teng D I, Shi X, et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American diabetes association: National cross sectional study[J]. BMJ, 2020, 369(2): m997.
    [4] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版)[J]. 中华糖尿病杂志, 2021, 13(4): 315-409.
    [5] Sharma P, Kumar R, Gaur K. Understanding the impact of diabetes on bone health: A clinical review[J]. Metabolism Open, 2024, 24(4): 100330. doi: 10.1016/j.metop.2024.100330
    [6] Schacter G I, Leslie W D. Diabetes and osteoporosis: part I, epidemiology and pathophysiology[J]. Endocrinology and Metabolism Clinics, 2021, 50(2): 275-285. doi: 10.1016/j.ecl.2021.03.005
    [7] Li J, Chen X, Lu L, et al. The relationship between bone marrow adipose tissue and bone metabolism in postmenopausal osteoporosis[J]. Cytokine & Growth Factor Reviews, 2020, 52(2): 88-98.
    [8] Cao Y, Dong B, Li Y, et al. Association of type 2 diabetes with osteoporosis and fracture risk: A systematic review and meta-analysis[J]. Medicine, 2025, 104(6): e41444. doi: 10.1097/MD.0000000000041444
    [9] Soh G T, Mohammad A H, Syed Isa S N L, et al. Comparison of cytokine profile between postmenopausal women with and without osteoporosis a case-control study[J]. Endocrine, Metabolic & Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders), 2023, 23(6): 811–817.
    [10] Terkawi M A, Matsumae G, Shimizu T, et al. Interplay between inflammation and pathological bone resorption: Insights into recent mechanisms and pathways in related diseases for future perspectives[J]. International Journal of Molecular Sciences, 2022, 23(3): 1786. doi: 10.3390/ijms23031786
    [11] Damani J J, De Souza M J, Strock N C A, et al. Associations between inflammatory mediators and bone outcomes in postmenopausal women: A cross-sectional analysis of baseline data from the prune study[J]. Journal of Inflammation Research, 2023, 16(1): 639-663. doi: 10.2147/JIR.S397837
    [12] Atlı H, Dayanan R. Evaluation of hematologic inflammatory markers in Graves’ disease[J]. Family Practice and Palliative Care, 2023, 8(5): 112-117. doi: 10.22391/fppc.1322984
    [13] Jarmuzek P, Kozlowska K, Defort P, et al. Prognostic values of systemic inflammatory immunological markers in glioblastoma: A systematic review and meta-analysis[J]. Cancers, 2023, 15(13): 3339. doi: 10.3390/cancers15133339
    [14] Meng L, Yang Y, Hu X, et al. Prognostic value of the pretreatment systemic immune-inflammation index in patients with prostate cancer: A systematic review and meta-analysis[J]. Journal of Translational Medicine, 2023, 21(1): 79. doi: 10.1186/s12967-023-03924-y
    [15] 中华医学会骨质疏松和骨矿盐疾病分会. 原发性骨质疏松症诊疗指南(2022)[J]. 中华骨质疏松和骨矿盐疾病杂志, 2022, 15(6): 573-611.
    [16] Ambikairajah A, Walsh E, Cherbuin N. A review of menopause nomenclature[J]. Reproductive Health, 2022, 19(1): 29. doi: 10.1186/s12978-022-01336-7
    [17] 中华医学会骨质疏松和骨矿盐疾病分会. 原发性骨质疏松症诊疗指南(2022)[J]. 中华骨质疏松和骨矿盐疾病杂志, 2022, 15(6): 573-611. doi: 10.3969/j.issn.1674-2591.2022.06.001
    [18] 滕晓洁, 王振刚, 唐冠兰, 等. 内分泌疾病与继发性骨质疏松症相关性的研究进展[J]. 实用中医内科杂志, 2023, 37(6): 59-62.
    [19] Rose J. Autoimmune connective tissue diseases: Systemic lupus erythematosus and rheumatoid arthritis[J]. Immunology and Allergy Clinics, 2023, 43(3): 613-625.
    [20] 李丹. 感染性疾病与炎症风暴[C]//中华医学会呼吸病学2020年会暨第二十一次全国呼吸病学学术会议论文集. 北京: 中华医学会, 2020: 462–470.
    [21] 陈孝平, 张英泽, 兰平, 等. 外科学(第10版)[M]. 北京: 人民卫生出版社, 2024: 613
    [22] Vestergaard P. Drugs causing bone loss[M]//Reginster J Y, Burlet N. Bone regulators and osteoporosis therapy[M]. London: Academic Press, 2020: 475−497.
    [23] Sobh M M, Abdalbary M, Elnagar S, et al. Secondary osteoporosis and metabolic bone diseases[J]. Journal of Clinical Medicine, 2022, 11(9): 2382. doi: 10.3390/jcm11092382
    [24] Huang R, Chen Y, Tu M, et al. Monocyte to high-density lipoprotein and apolipoprotein A1 ratios are associated with bone homeostasis imbalance caused by chronic inflammation in postmenopausal women with type 2 diabetes mellitus[J]. Frontiers in Pharmacology, 2022, 13(1): 1062999. doi: 10.3389/fphar.2022.1062999
    [25] Ono T, Hayashi M, Sasaki F, et al. RANKL biology: Bone metabolism, the immune system, and beyond[J]. Inflammation and Regeneration, 2020, 40(1): 1-16. doi: 10.1186/s41232-019-0110-4
    [26] Martiniakova M, Biro R, Penzes N, et al. Links among obesity, type 2 diabetes mellitus, and osteoporosis: Bone as a target[J]. International Journal of Molecular Sciences, 2024, 25(9): 4827. doi: 10.3390/ijms25094827
    [27] Liu Q, Wu W, Yang J, et al. A GP130‐targeting small molecule, LMT‐28, reduces LPS‐induced bone resorption around implants in diabetic models by inhibiting IL‐6/GP130/JAK2/STAT3 signaling[J]. Mediators of Inflammation, 2023, 2023(1): 9330439.
    [28] Xu J, Yu L, Liu F, et al. The effect of cytokines on osteoblasts and osteoclasts in bone remodeling in osteoporosis: A review[J]. Frontiers in Immunology, 2023, 14(1): 1222129. doi: 10.3389/fimmu.2023.1222129
    [29] Wang J, Chen J, Zhang B, et al. IL-6 regulates the bone metabolism and inflammatory microenvironment in aging mice by inhibiting Setd7[J]. Acta Histochemica, 2021, 123(5): 151718. doi: 10.1016/j.acthis.2021.151718
    [30] Shahen V A, Gerbaix M, Koeppenkastrop S, et al. Multifactorial effects of hyperglycaemia, hyperinsulinemia and inflammation on bone remodelling in type 2 diabetes mellitus[J]. Cytokine & Growth Factor Reviews, 2020, 55(5): 109-118.
    [31] Mouliou D S. C-reactive protein: pathophysiology, diagnosis, false test results and a novel diagnostic algorithm for clinicians[J]. Diseases, 2023, 11(4): 132. doi: 10.3390/diseases11040132
    [32] Ogbonna A, Ohotu E, Nwobodo E. The neutrophil to lymphocyte ratio: an emerging diagnostic biomarker for parainflammation[J]. International Blood Research & Reviews, 2022, 13(1): 130-133.
    [33] Takagi R, Sakamoto E, Kido J, et al. S100A9 increases IL-6 and RANKL Expressions through MAPKs and STAT3 signaling pathways in osteocyte-like cells[J]. BioMed Research International, 2020, 2020(1): 7149408.
    [34] Abid S, Lee M J, Rodich B, et al. Evaluation of an association between RANKL and OPG with bone disease in people with cystic fibrosis[J]. Journal of Cystic Fibrosis, 2023, 22(1): 140-145. doi: 10.1016/j.jcf.2022.08.011
    [35] Dan J, Tan J, Huang J, et al. Early changes of platelet-lymphocyte ratio correlate with neoadjuvant chemotherapy response and predict pathological complete response in breast cancer[J]. Molecular and Clinical Oncology, 2023, 19(5): 90. doi: 10.3892/mco.2023.2686
    [36] Shindo S, Savitri I J, Ishii T, et al. Dual-function semaphorin 4D released by platelets: Suppression of osteoblastogenesis and promotion of osteoclastogenesis[J]. International Journal of Molecular Sciences, 2022, 23(6): 2938. doi: 10.3390/ijms23062938
    [37] Tang Y, Peng B, Liu J, et al. Systemic immune-inflammation index and bone mineral density in postmenopausal women: A cross-sectional study of the national health and nutrition examination survey (NHANES) 2007-2018[J]. Frontiers in Immunology, 2022, 13(1): 975400. doi: 10.3389/fimmu.2022.975400
    [38] Fischer V, Haffner-Luntzer M. Interaction between bone and immune cells: implications for postmenopausal osteoporosis[J]. Seminars in Cell & Developmental Biology, 2022, 123(3): 14-21.
  • [1] 林荣梅, 刘邦燕, 陈杨君, 杨艳, 金媛, 杨永锐, 陆霓虹.  多项临床指标与肺结节良恶性的相关性, 昆明医科大学学报. 2025, 46(7): 101-109. doi: 10.12259/j.issn.2095-610X.S20250712
    [2] 姚敬宇, 韦睿, 张琳, 石胜柳, 白鹏.  外周血中NLR、PLR、FRA对骨折后骨质正常和骨质减少的影响, 昆明医科大学学报. 2024, 45(11): 125-129. doi: 10.12259/j.issn.2095-610X.S20241117
    [3] 牛玲, 马蓉, 张程, 苗翠娟, 唐艳, 刘方, 李博一.  2型糖尿病合并骨质疏松患者PTH及ER基因多态性分析, 昆明医科大学学报. 2024, 45(6): 106-112. doi: 10.12259/j.issn.2095-610X.S20240614
    [4] 杨金润, 赵欢欢, 吴志聪, 余戈蕊, 马岚, 陈玉芬, 解谩伊, 董玉.  化湿润睛汤通过调控COX-2、TNF-α和 IL-6蛋白改善去势雄性干眼病大鼠的炎症反应, 昆明医科大学学报. 2023, 44(11): 38-46. doi: 10.12259/j.issn.2095-610X.S20231106
    [5] 苗辉, 蒋萍, 娄振凯, 邱龙恒, 周子然, 李成勇, 王兵.  QCT与 DXA对绝经后妇女骨质疏松症检出率的对比, 昆明医科大学学报. 2022, 43(4): 55-61. doi: 10.12259/j.issn.2095-610X.S20220407
    [6] 李博一, 牛玲, 马蓉, 张娴, 刘方, 唐艳, 苗翠娟, 张程, 韩竺君.  护骨素基因启动子区T950C多态性与2型糖尿病合并骨质疏松症的关系, 昆明医科大学学报. 2022, 43(3): 67-73. doi: 10.12259/j.issn.2095-610X.S20220306
    [7] 王娟娟, 陈雨青, 邓茜, 高健.  心肌酶谱与儿童1型糖尿病酮症酸中毒严重程度的相关性, 昆明医科大学学报. 2021, 42(1): 147-151. doi: 10.12259/j.issn.2095-610X.S20210129
    [8] 徐键, 李乐, 黄艳丽, 桂金沭, 李娅红, 马蕾.  炎症因子TNF-α、IL-在慢性血栓栓塞性肺动脉高压患者中的表达及临床意义, 昆明医科大学学报. 2021, 42(6): 119-123. doi: 10.12259/j.issn.2095-610X.S20210631
    [9] 牛玲, 李博一, 张程, 马蓉, 唐艳, 刘方, 尹利民, 韩竺君, 苗翠娟, 张娴.  降钙素受体、维生素D受体基因多态性与昆明地区2型糖尿病合并骨质疏松的关系, 昆明医科大学学报. 2021, 42(11): 74-80. doi: 10.12259/j.issn.2095-610X.S20211114
    [10] 牛玲, 李博一, 毛静秋, 唐艳, 马蓉, 刘方, 张程, 韩竹君, 苗翠娟, 张娴.  维生素D受体基因多态性与昆明地区2型糖尿病伴骨质疏松症的关系, 昆明医科大学学报. 2021, 42(7): 70-76. doi: 10.12259/j.issn.2095-610X.S20210711
    [11] 李博一, 牛玲, 马蓉, 张娴, 刘方, 唐艳, 苗翠娟, 韩竺君, 张程.  护骨素基因启动子区T950C多态性与昆明地区2型糖尿病伴骨质疏松症的关系, 昆明医科大学学报. 2021, 43(): 1-8. doi: 10.12259/j.issn.2095-610X.S20211112
    [12] 李博一, 牛铃, 马蓉, 张娴, 刘方, 唐艳, 苗翠娟, 韩竺君, 张程.  降钙素受体基因多态性与昆明地区2型糖尿病伴骨质疏松症的相关性, 昆明医科大学学报. 2021, 42(7): 57-63. doi: 10.12259/j.issn.2095-610X.S20210709
    [13] 杨柳, 屈启才, 陈瑞, 角述兰, 思永玉, 周华.  右美托咪定对烟雾吸入性肺损伤大鼠炎症反应的影响, 昆明医科大学学报. 2020, 41(11): 30-37. doi: 10.12259/j.issn.2095-610X.S20201124
    [14] 黄斌, 赵瑞华, 费启华, 李建伟, 支燕, 刘文军, 李晓庆.  乌司他丁联合连续性肾脏替代疗法治疗重症烧伤患者的效果及对炎症因子、28 d全因死亡率的影响, 昆明医科大学学报. 2020, 41(11): 109-113. doi: 10.12259/j.issn.2095-610X.S20201102
    [15] 张启玮, 李海峰, 李群辉.  昆明市骨质疏松症流行病学调查, 昆明医科大学学报. 2017, 38(04): 35-39.
    [16] 杨再英.  骨质疏松症对骨性关节炎发病机制的影响, 昆明医科大学学报. 2016, 37(04): -.
    [17] 奎莉越.  降钙素基因相关肽对LPS诱导肺上皮细胞炎症因子的影响, 昆明医科大学学报. 2015, 36(05): -.
    [18] 刘军平.  影响绝经期妇女骨质疏松症的多因素分析, 昆明医科大学学报. 2015, 36(10): -.
    [19] 徐玉善.  绝经后骨质疏松症的T细胞亚群的变化及意义, 昆明医科大学学报. 2015, 36(04): -1.
    [20] 李静.  2型糖尿病患者的临床流行特征及其与骨质疏松症的关系, 昆明医科大学学报. 2012, 33(08): -.
  • 加载中
图(1) / 表(5)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  11
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-04

目录

    /

    返回文章
    返回