留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

藏红花素通过IRF7/NF-κB信号通路对垂体腺瘤的抑制作用

刘卓慧 覃诗茵 赵鹤翔 贾峰峰 阮标 龙瑞清

刘卓慧, 覃诗茵, 赵鹤翔, 贾峰峰, 阮标, 龙瑞清. 藏红花素通过IRF7/NF-κB信号通路对垂体腺瘤的抑制作用[J]. 昆明医科大学学报.
引用本文: 刘卓慧, 覃诗茵, 赵鹤翔, 贾峰峰, 阮标, 龙瑞清. 藏红花素通过IRF7/NF-κB信号通路对垂体腺瘤的抑制作用[J]. 昆明医科大学学报.
Zhuohui LIU, Shiyin QIN, Hexiang ZHAO, Fengfeng JIA, Biao RUAN, Ruiqing LONG. Inhibitory Effect of Crocin on Pituitary Adenomas via IRF7/NF-κB Signaling Pathway[J]. Journal of Kunming Medical University.
Citation: Zhuohui LIU, Shiyin QIN, Hexiang ZHAO, Fengfeng JIA, Biao RUAN, Ruiqing LONG. Inhibitory Effect of Crocin on Pituitary Adenomas via IRF7/NF-κB Signaling Pathway[J]. Journal of Kunming Medical University.

藏红花素通过IRF7/NF-κB信号通路对垂体腺瘤的抑制作用

基金项目: 国家自然科学基金地区科学基金资助项目(82160513);云南省科技厅-昆明医科大学联合专项(202101AY070001-082);云南省建设面向南亚东南亚科技创新中心专项(202303AP140005)
详细信息
    作者简介:

    刘卓慧(1985~),女,云南昆明人,医学博士,主治医师,主要从事耳鼻咽喉科基础及临床研究工作

    通讯作者:

    龙瑞清,E-mail:lrq323638@163.com

  • 中图分类号: R736.4[

Inhibitory Effect of Crocin on Pituitary Adenomas via IRF7/NF-κB Signaling Pathway

  • 摘要:   目的  通过临床样本及垂体腺瘤HP75细胞的相关分子生物学实验探讨藏红花素(Crocin)在垂体腺瘤(PA)中的作用及其机制。  方法  收集2022年6月至2023年5月昆明医科大学第一附属医院神经外二科及耳鼻咽喉颅底外科16例PA样本,3例正常对照垂体组织样本来自于昆明医科大学法医学院人体解剖。通过对临床样本检测IRF7 mRNA表达量,敲低HP75细胞IRF7表达检测增殖、迁移、侵袭及凋亡能力;进一步检测HP75细胞中IRF7调控NF-κB表达,以及藏红花素调控PA细胞的生长及其对IRF7/NF-κB信号通路调控作用。  结果  RT-qPCR检测及免疫组化显示,与正常对照组相比,PA中IRF7 mRNA的表达量增加(P < 0.001);si-IRF7组的IRF7蛋白表达量降低(P < 0.001);CCK-8、Transwell及流式细胞术检测结果显示,与对照组相比,敲低IRF7降低HP75细胞的细胞活力(P < 0.001),抑制HP75细胞的迁移和侵袭(P < 0.001),促进HP75细胞凋亡(P < 0.001)。此外,敲低IRF7能抑制p-NF-κB p65/NF-κB p65的表达(P < 0.001),抑制p-NF-κB p65/NF-κB p65的表达(P < 0.001);而过表达IRF7能部分逆转Crocin的作用(P < 0.001),回复p-NF-κB p65/NF-κB p65的部分表达(P < 0.01);最后,HP75细胞的生物学行为检测结果显示,与Crocin组相比,过表达IRF7能提高HP75细胞的细胞活力,同时促进其迁移和侵袭,抑制细胞凋亡(P < 0.001)。  结论  Crocin处理能抑制PA细胞的增殖、迁移和侵袭,并促进细胞凋亡,缓解PA的发展进程。在机制上,IRF7在PA中高表达,敲低IRF7能抑制PA的恶性生长;Crocin抑制PA细胞增殖、迁移、侵袭,促进细胞凋亡的作用可通过抑制IRF7/NF-κB信号通路实现。
  • 图  1  IRF7在垂体腺瘤中高表达

    A:RT-qPCR检测16例PA临床样本中IRF7 mRNA的表达情况($\bar x \pm s $);B:免疫组化检测临床样本中IRF7的表达情况(DAB染色,200×)。***P < 0.001。

    Figure  1.  High expression of IRF7 was observed in pituitary adenomas

    图  2  敲低IRF7抑制垂体腺瘤细胞增殖、迁移、侵袭,促进凋亡($\bar x \pm s $,n = 3)

    A:Western blot检测IRF7的转染效率(A1:Western blot检测IRF7的蛋白表达电泳图,A2:IRF7蛋白表达的统计学分析);B:CCK-8检测HP75细胞的细胞活力;C:Transwell检测HP75细胞迁移和侵袭(100×)(C1:Transwell检测HP75细胞迁移和侵袭,C2:HP75细胞迁移统计学分析,C3:HP75细胞侵袭统计学分析);D:流式细胞术检测HP75细胞凋亡(D1:流式细胞术检测HP75细胞凋亡,D2:HP75细胞凋亡统计学分析)。***P < 0.001。

    Figure  2.  Knocking down IRF7 inhibited the proliferation, migration, and invasion of pituitary adenoma cells and promoted apoptosis($\bar x \pm s $,n = 3)

    图  3  敲低IRF7抑制NF-κB信号通路($\bar x \pm s $,n = 3)

    A:Western blot检测NF-κB p65和p-NF-κB p65的表达(A1:Western blot检测NF-κB p65和p-NF-κB p65的蛋白表达电泳图,A2:NF-κB p65和p-NF-κB p65蛋白表达的统计学分析);B:免疫荧光检测NF-κB p65的表达(1000×)。**P < 0.01。

    Figure  3.  Knocking down IRF7 inhibited the NF-κB signaling pathway($\bar x \pm s $,n = 3)

    图  4  藏红花素抑制垂体腺瘤细胞恶性生长,且调控IRF7/NF-κB信号通路($\bar x \pm s $,n = 3)

    A:Crocin浓度梯度处理后CCK-8检测HP75细胞的细胞活力;B:CCK-8检测HP75细胞的细胞活力;C:Transwell检测HP75细胞迁移和侵袭(100×)(C1:Transwell检测HP75细胞迁移和侵袭,C2:HP75细胞迁移统计学分析,C3:HP75细胞侵袭统计学分析);D:流式细胞术检测HP75细胞凋亡(D1:流式细胞术检测HP75细胞凋亡,D2:HP75细胞凋亡统计学分析);E:Western blot检测IRF7/NF-κB信号通路相关蛋白的表达水平(E1:Western blot检测IRF7/NF-κB信号通路相关蛋白表达的电泳图,E2:IRF7/NF-κB信号通路相关蛋白表达的统计学分析);F:Western blot检测IRF7的核转移。***P < 0.001。

    Figure  4.  Crocin inhibited the malignant growth of pituitary adenoma cells and regulated the IRF7/NF-κB signaling pathway($\bar x \pm s $,n = 3)

    图  5  藏红花素抑制垂体腺瘤细胞恶性生长,调控IRF7/NF-κB信号通路($\bar x \pm s $,n = 3)

    A:Western blot检测IRF7的过表达效率(A1:Western blot检测IRF7蛋白表达的电泳图,A2:IRF7蛋白表达的统计学分析);B:Western blot检测NF-κB p65和p-NF-κB p65的表达(B1:Western blot检测NF-κB p65和p-NF-κB p65蛋白表达的电泳图,B2:NF-κB p65和p-NF-κB p65蛋白表达的统计学分析);C:CCK-8检测HP75细胞的细胞活力;D:Transwell检测HP75细胞迁移和侵袭(100×)(D1:HP75细胞迁移统计学分析,D2:HP75细胞侵袭统计学分析,D3:Transwell检测HP75细胞迁移和侵袭);E:流式细胞术检测HP75细胞凋亡(E1:流式细胞术检测HP75细胞凋亡,E2:HP75细胞凋亡统计学分析)。**P < 0.01、***P < 0.001。

    Figure  5.  Crocin inhibited the malignant growth of pituitary adenoma cells and regulated the IRF7/NF-κB signaling pathway($\bar x \pm s $,n = 3)

    表  1  引物序列

    Table  1.   Primer sequence

    靶基因序列(F:正向引物;R:反向引物)(5′-3′)
    IRF7F:GCTGGACGTGACCATCATGTA
    R:GGGCCGTATAGGAACGTGC
    β-actinF:CATGTACGTTGCTATCCAGGC
    R:CTCCTTAATGTCACGCACGAT
    下载: 导出CSV
  • [1] Tritos NA, Miller KK. Diagnosis and management of pituitary adenomas: A review[J]. JAMA, 2023, 329(16): 1386-1398.

    Tritos NA,Miller KK. Diagnosis and management of pituitary adenomas: A review[J]. JAMA,2023,329(16):1386-1398.
    [2] Hlaváč m, Sommer F, Karpel-massler G, et al. Differential diagnosis and treatment of pituitary adenomas[J]. HNO,2019,67(4):307-318.
    [3] Jin L, Cai K, Wu W, et al. Correlations between the expression of molecules in the TGF-β signaling pathway and clinical factors in adamantinomatous craniopharyngiomas[J]. Front Endocrinol (Lausanne), 2023, 14(3): e1167776.

    Jin L,Cai K,Wu W,et al. Correlations between the expression of molecules in the TGF-β signaling pathway and clinical factors in adamantinomatous craniopharyngiomas[J]. Front Endocrinol (Lausanne),2023,14(3):e1167776.
    [4] Beylerli O, Gareev I, Pavlov V, et al. The role of long noncoding rnas in the biology of pituitary adenomas[J]. World Neurosurg, 2020, 137(5): 252-256.

    Beylerli O,Gareev I,Pavlov V,et al. The role of long noncoding rnas in the biology of pituitary adenomas[J]. World Neurosurg,2020,137(5):252-256.
    [5] Bukhari SI, Manzoor M, Dhar M K. A comprehensive review of the pharmacological potential of Crocus sativus and its bioactive apocarotenoids[J]. Biomed Pharmacother, 2018, 98(2): 733-745.

    Bukhari SI,Manzoor M,Dhar M K. A comprehensive review of the pharmacological potential of Crocus sativus and its bioactive apocarotenoids[J]. Biomed Pharmacother,2018,98(2):733-745.
    [6] Luo Y, Yu P, Zhao J, et al. Pathogenesis and anti-proliferation mechanisms of Crocin in human gastric carcinoma cells[J]. International Journal of Clinical and Experimental Pathology, 2020, 13(5): 912-922.

    Luo Y,Yu P,Zhao J,et al. Pathogenesis and anti-proliferation mechanisms of Crocin in human gastric carcinoma cells[J]. International Journal of Clinical and Experimental Pathology,2020,13(5):912-922.
    [7] Faraji S, Moosavi SA, Neshasteh-riz A, et al. Radioprotective effect of resveratrol, crocin, and their combination on cytogenetic alterations in human lymphocytes[J]. J Biomed Phys Eng, 2024, 14(3): 255-266.

    Faraji S,Moosavi SA,Neshasteh-riz A,et al. Radioprotective effect of resveratrol,crocin,and their combination on cytogenetic alterations in human lymphocytes[J]. J Biomed Phys Eng,2024,14(3):255-266.
    [8] Wang G, Zhang B, Wang Y, et al. Crocin promotes apoptosis of human skin cancer cells by inhibiting the JAK/STAT pathway[J]. Experimental and Therapeutic Medicine, 2018, 16(6): 5079-5084.

    Wang G,Zhang B,Wang Y,et al. Crocin promotes apoptosis of human skin cancer cells by inhibiting the JAK/STAT pathway[J]. Experimental and Therapeutic Medicine,2018,16(6):5079-5084.
    [9] Jia Y, Yang H, Yu J, et al. Crocin suppresses breast cancer cell proliferation by down-regulating tumor promoter miR-122-5p and up-regulating tumor suppressors FOXP2 and SPRY2[J]. Environmental toxicology, 2023, 38(7): 1597-1608.

    Jia Y,Yang H,Yu J,et al. Crocin suppresses breast cancer cell proliferation by down-regulating tumor promoter miR-122-5p and up-regulating tumor suppressors FOXP2 and SPRY2[J]. Environmental toxicology,2023,38(7):1597-1608.
    [10] Xiao Q, Li X, Li Y, et al. Biological drug and drug delivery-mediated immunotherapy[J]. Acta Pharm Sin B, 2021, 11(4): 941-960.

    Xiao Q,Li X,Li Y,et al. Biological drug and drug delivery-mediated immunotherapy[J]. Acta Pharm Sin B,2021,11(4):941-960.
    [11] Antonczyk A, Krist B, Sajek M, et al. Direct Inhibition of IRF-dependent transcriptional regulatory mechanisms associated with disease[J]. Frontiers in Immunology, 2019, 10(5): e01176.

    Antonczyk A,Krist B,Sajek M,et al. Direct Inhibition of IRF-dependent transcriptional regulatory mechanisms associated with disease[J]. Frontiers in Immunology,2019,10(5):e01176.
    [12] Li W, Wang Q, Feng Q, et al. Oncogenic KSHV-encoded interferon regulatory factor upregulates HMGB2 and CMPK1 expression to promote cell invasion by disrupting a complex lncRNA-OIP5-AS1/miR-218-5p network[J]. PLoS Pathogens, 2019, 15(1): e1007578.

    Li W,Wang Q,Feng Q,et al. Oncogenic KSHV-encoded interferon regulatory factor upregulates HMGB2 and CMPK1 expression to promote cell invasion by disrupting a complex lncRNA-OIP5-AS1/miR-218-5p network[J]. PLoS Pathogens,2019,15(1):e1007578.
    [13] Li W, Wang F, Shi J, et al. Sperm associated antigen 9 promotes oncogenic KSHV-encoded interferon regulatory factor-induced cellular transformation and angiogenesis by activating the JNK/VEGFA pathway[J]. PLoS Pathogens, 2020, 16(8): e1008730.

    Li W,Wang F,Shi J,et al. Sperm associated antigen 9 promotes oncogenic KSHV-encoded interferon regulatory factor-induced cellular transformation and angiogenesis by activating the JNK/VEGFA pathway[J]. PLoS Pathogens,2020,16(8):e1008730.
    [14] Liao W, Overman M J, Boutin A T, et al. KRAS-IRF2 axis drives immune suppression and immune therapy resistance in colorectal cancer[J]. Cancer Cell, 2019, 35(4): 559-572.

    Liao W,Overman M J,Boutin A T,et al. KRAS-IRF2 axis drives immune suppression and immune therapy resistance in colorectal cancer[J]. Cancer Cell,2019,35(4):559-572.
    [15] Kazzaz S A, Tawil J, Harhaj E W. The aryl hydrocarbon receptor-interacting protein in cancer and immunity: Beyond a chaperone protein for the dioxin receptor[J]. The Journal of Biological Chemistry, 2024, 300(4): e107157.

    Kazzaz S A,Tawil J,Harhaj E W. The aryl hydrocarbon receptor-interacting protein in cancer and immunity: Beyond a chaperone protein for the dioxin receptor[J]. The Journal of Biological Chemistry,2024,300(4):e107157.
    [16] Zhang R, Yang F, Fan H, et al. Long non-coding RNA TUG1/microRNA-187-3p/TESC axis modulates progression of pituitary adenoma via regulating the NF-κB signaling pathway[J]. Cell Death & Disease, 2021, 12(6): e524.

    Zhang R,Yang F,Fan H,et al. Long non-coding RNA TUG1/microRNA-187-3p/TESC axis modulates progression of pituitary adenoma via regulating the NF-κB signaling pathway[J]. Cell Death & Disease,2021,12(6):e524.
    [17] Fan S, Popli S, Chakravarty S, et al. Non-transcriptional IRF7 interacts with NF-κB to inhibit viral inflammation[J]. The Journal of Biological Chemistry, 2024, 300(4): e107200.

    Fan S,Popli S,Chakravarty S,et al. Non-transcriptional IRF7 interacts with NF-κB to inhibit viral inflammation[J]. The Journal of Biological Chemistry,2024,300(4):e107200.
    [18] Xu Q, Yu J, Jia G, et al. Crocin attenuates NF-κB-mediated inflammation and proliferation in breast cancer cells by down-regulating PRKCQ[J]. Cytokine, 2022, 154(6): e155888.

    Xu Q,Yu J,Jia G,et al. Crocin attenuates NF-κB-mediated inflammation and proliferation in breast cancer cells by down-regulating PRKCQ[J]. Cytokine,2022,154(6):e155888.
    [19] Daly AF, Beckers A. The epidemiology of pituitary adenomas[J]. Endocrinol Metab Clin North Am, 2020, 49(3): 347-355.

    Daly AF,Beckers A. The epidemiology of pituitary adenomas[J]. Endocrinol Metab Clin North Am,2020,49(3):347-355.
    [20] Melmed S, Kaiser UB, Lopes MB, et al. Clinical biology of the pituitary adenoma[J]. Endocr Rev, 2022, 43(6): 1003-1037.

    Melmed S,Kaiser UB,Lopes MB,et al. Clinical biology of the pituitary adenoma[J]. Endocr Rev,2022,43(6):1003-1037.
    [21] Xi X, Liu N, Wang Q, et al. ACT001, a novel PAI-1 inhibitor, exerts synergistic effects in combination with cisplatin by inhibiting PI3K/AKT pathway in glioma[J]. Cell Death & Disease, 2019, 10(10): e757.

    Xi X,Liu N,Wang Q,et al. ACT001,a novel PAI-1 inhibitor,exerts synergistic effects in combination with cisplatin by inhibiting PI3K/AKT pathway in glioma[J]. Cell Death & Disease,2019,10(10):e757.
    [22] Salomon M P, Wang X, Marzese D M, et al. The epigenomic landscape of pituitary adenomas reveals specific alterations and differentiates among acromegaly, cushing's disease and endocrine-inactive subtypes[J]. Clinical cancer research: an official journal of the American Association for Cancer Research, 2018, 24(17): 4126-4136.

    Salomon M P,Wang X,Marzese D M,et al. The epigenomic landscape of pituitary adenomas reveals specific alterations and differentiates among acromegaly,cushing's disease and endocrine-inactive subtypes[J]. Clinical cancer research: an official journal of the American Association for Cancer Research,2018,24(17):4126-4136.
    [23] Zhong W, Yang W, Qin Y, et al. 6-Gingerol stabilized the p-VEGFR2/VE- cadherin/β-catenin/actin complex promotes microvessel normalization and suppresses tumor progression[J]. Journal of Experimental & Clinical Cancer Research: CR, 2019, 38(1): e285.

    Zhong W,Yang W,Qin Y,et al. 6-Gingerol stabilized the p-VEGFR2/VE- cadherin/β-catenin/actin complex promotes microvessel normalization and suppresses tumor progression[J]. Journal of Experimental & Clinical Cancer Research: CR,2019,38(1):e285.
    [24] Veisi A, AkbarI G, Mard S A, et al. Role of crocin in several cancer cell lines: An updated review[J]. Iranian Journal of Basic Medical Sciences, 2020, 23(1): 3-12.

    Veisi A,AkbarI G,Mard S A,et al. Role of crocin in several cancer cell lines: An updated review[J]. Iranian Journal of Basic Medical Sciences,2020,23(1):3-12.
    [25] Bakshi H A, Quinn G A, Nasef M M, et al. Crocin inhibits angiogenesis and metastasis in colon cancer via TNF-α/NF-kB/VEGF pathways[J]. Cells., 2022, 11(9): e1502.

    Bakshi H A,Quinn G A,Nasef M M,et al. Crocin inhibits angiogenesis and metastasis in colon cancer via TNF-α/NF-kB/VEGF pathways[J]. Cells.,2022,11(9):e1502.
    [26] Bi X, Jiang Z, Luan Z, et al. Crocin exerts anti-proliferative and apoptotic effects on cutaneous squamous cell carcinoma via miR-320a/ATG2B[J]. Bioengineered, 2021, 12(1): 4569-4580.

    Bi X,Jiang Z,Luan Z,et al. Crocin exerts anti-proliferative and apoptotic effects on cutaneous squamous cell carcinoma via miR-320a/ATG2B[J]. Bioengineered,2021,12(1):4569-4580.
    [27] Ma W, Huang G, Wang Z, et al. IRF7: role and regulation in immunity and autoimmunity[J]. Front Immunol, 2023, 14(10): e1236923.

    Ma W,Huang G,Wang Z,et al. IRF7: role and regulation in immunity and autoimmunity[J]. Front Immunol,2023,14(10):e1236923.
    [28] Lv Y, Sun S, Zhang J, et al. Loss of RBM45 inhibits breast cancer progression by reducing the SUMOylation of IRF7 to promote IFNB1 transcription[J]. Cancer Lett, 2024, 596(1): e216988.

    Lv Y,Sun S,Zhang J,et al. Loss of RBM45 inhibits breast cancer progression by reducing the SUMOylation of IRF7 to promote IFNB1 transcription[J]. Cancer Lett,2024,596(1):e216988.
    [29] Lin L, Cai J. Circular RNA circ-EGLN3 promotes renal cell carcinoma proliferation and aggressiveness via miR-1299-mediated IRF7 activation[J]. Journal of Cellular Biochemistry, 2020, 121(11): 4377-4385.

    Lin L,Cai J. Circular RNA circ-EGLN3 promotes renal cell carcinoma proliferation and aggressiveness via miR-1299-mediated IRF7 activation[J]. Journal of Cellular Biochemistry,2020,121(11):4377-4385.
    [30] Teng S, Hao J, Bi H, et al. The protection of crocin against ulcerative colitis and colorectal cancer via suppression of NF-κB-mediated inflammation[J]. Frontiers in Pharmacology, 2021, 12(3): e639458.

    Teng S,Hao J,Bi H,et al. The protection of crocin against ulcerative colitis and colorectal cancer via suppression of NF-κB-mediated inflammation[J]. Frontiers in Pharmacology,2021,12(3):e639458.
  • [1] 张碧江, 李经辉.  神经内镜与显微镜经鼻蝶垂体腺瘤切除术疗效对比, 昆明医科大学学报. 2024, 45(7): 87-91. doi: 10.12259/j.issn.2095-610X.S20240713
    [2] 邓勇军, 陈倩, 邹建彬, 宫政, 刘焕鹏.  ZIC1基因过表达激活P53信号通路抑制胸膜间皮瘤细胞增殖, 昆明医科大学学报. 2024, 45(4): 35-40. doi: 10.12259/j.issn.2095-610X.S20240405
    [3] 尹小川, 尹瑞扬, 李冉华, 蔡方奇, 崔岳, 毕涛, 童兴和.  恶性胸膜间皮瘤细胞培养条件及CDKN2B对癌细胞的作用, 昆明医科大学学报. 2024, 45(1): 28-34. doi: 10.12259/j.issn.2095-610X.S20240105
    [4] 秦祥川, 李金秋, 黄晓婧, 忽吐比丁·库尔班, 阿仙姑·哈斯木.  HPV E6通过Rap1信号通路影响宫颈癌细胞增殖、侵袭及迁移的研究, 昆明医科大学学报. 2024, 45(9): 9-16. doi: 10.12259/j.issn.2095-610X.S20240902
    [5] 严怡然, 沈成万, 尚香玉, 冯婵, 李金秋, 阿仙姑·哈斯木.  高良姜素通过影响Hippo/YAP通路抑制宫颈癌Hela细胞迁移和侵袭, 昆明医科大学学报. 2024, 46(): 1-7.
    [6] 谢文友, 黄同亨, 杨燕汝, 刘金阳.  神经导航辅助内镜下经鼻蝶入路切除垂体腺瘤的临床对照, 昆明医科大学学报. 2023, 44(11): 108-112. doi: 10.12259/j.issn.2095-610X.S20231116
    [7] 王好玉, 何茜, 赵波, 和仕珍, 刘晨, 王鹏.  弥散张量成像在垂体大腺瘤患者脑白质改变中的研究, 昆明医科大学学报. 2023, 44(12): 72-78. doi: 10.12259/j.issn.2095-610X.S20231212
    [8] 刘邦卿, 李剑锋, 刘晓辉, 张劲男, 梁金屏.  miR-196b靶向ERG促进肺腺癌的增殖和迁移, 昆明医科大学学报. 2023, 44(10): 83-91. doi: 10.12259/j.issn.2095-610X.S20231023
    [9] 徐冬杏, 唐波, 朱国, 雷学芬, 王秋虹, 魏东.  Twist1调控Bmi1对胆囊癌细胞侵袭迁移的影响及其机制研究, 昆明医科大学学报. 2023, 44(3): 28-33. doi: 10.12259/j.issn.2095-610X.S20230320
    [10] 赵斌, 段元鹏, 张国颖, 毕城伟, 杨李波, 施致裕, 杨勇, 张建朋, 高婷.  CircRNA EZH2通过调控miR-30c-5p促进前列腺癌细胞增殖和迁移, 昆明医科大学学报. 2022, 43(7): 25-32. doi: 10.12259/j.issn.2095-610X.S20220731
    [11] 廖周俊, 杨少华, 刘立鑫, 胡晟, 陈轶晖, 康强, 张小文.  AK4对肝内胆管癌细胞HUCCT1增殖、迁移的影响, 昆明医科大学学报. 2022, 43(6): 1-6. doi: 10.12259/j.issn.2095-610X.S20220611
    [12] 张黎, 王清岑, 周罗慧, 杨娟, 王红.  木犀草素通过调控内质网应激抑制平滑肌细胞的迁移, 昆明医科大学学报. 2022, 43(5): 12-17. doi: 10.12259/j.issn.2095-610X.S20220518
    [13] 杨兰, 贾霄, 姜奕彤, 崔琪, 刘光赐, 何颖红.  UBE2C基因沉默表达对人胃癌AGS细胞增殖和迁移的影响, 昆明医科大学学报. 2021, 42(5): 18-23. doi: 10.12259/j.issn.2095-610X.S20210504
    [14] 徐爱萍, 林华, 高丽辉, 李玲, 陈梦威, 王歌, 杨娟, 牛艳芬.  芒果苷元对TGF-β1诱导的HK-2细胞EMT的影响, 昆明医科大学学报. 2021, 42(7): 1-6. doi: 10.12259/j.issn.2095-610X.S20210701
    [15] 李珊珊, 全宇航, 龚玲俐, 杨会, 浦劲宏, 王忠慧.  七氟烷对人骨肉瘤Saos2细胞增殖、侵袭、迁移及凋亡的影响, 昆明医科大学学报. 2020, 41(05): 103-107.
    [16] 梁乃超.  基质金属蛋白酶MMP-9、TIMP-1及VEGF的表达情况与非小细胞肺癌组织侵袭的相关性, 昆明医科大学学报. 2016, 37(10): -.
    [17] 刘锋.  槲皮素对人肝癌高转移细胞生长及侵袭能力的影响, 昆明医科大学学报. 2014, 35(05): -.
    [18] 史兆坤.  单核细胞趋化蛋白-1趋化巨噬细胞迁移与侵袭的体外实验研究, 昆明医科大学学报. 2014, 35(04): -.
    [19] 刘佳鑫.  SDF-1/CXCR4在恶性胶质瘤细胞体外增殖、迁移及侵袭中的作用, 昆明医科大学学报. 2013, 34(01): -.
    [20] 低氧诱导对人肝癌SMMC7721细胞生物学行为的影响, 昆明医科大学学报. 2011, 32(05): -.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  93
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-26
  • 网络出版日期:  2024-11-23

目录

    /

    返回文章
    返回