留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

miR-125b-5p调控HK2抑制胆囊癌细胞增殖和糖酵解

张玮 王保全 雷喜锋 王旭 张梁

张玮, 王保全, 雷喜锋, 王旭, 张梁. miR-125b-5p调控HK2抑制胆囊癌细胞增殖和糖酵解[J]. 昆明医科大学学报, 2022, 43(12): 23-29. doi: 10.12259/j.issn.2095-610X.S20221206
引用本文: 张玮, 王保全, 雷喜锋, 王旭, 张梁. miR-125b-5p调控HK2抑制胆囊癌细胞增殖和糖酵解[J]. 昆明医科大学学报, 2022, 43(12): 23-29. doi: 10.12259/j.issn.2095-610X.S20221206
Wei ZHANG, Baoquan WANG, Xifeng LEI, Xu WANG, Liang ZHANG. miR-125b-5p Regulates HK2 to Inhibit Proliferation and Glycolysis of Gallbladder Cancer Cells[J]. Journal of Kunming Medical University, 2022, 43(12): 23-29. doi: 10.12259/j.issn.2095-610X.S20221206
Citation: Wei ZHANG, Baoquan WANG, Xifeng LEI, Xu WANG, Liang ZHANG. miR-125b-5p Regulates HK2 to Inhibit Proliferation and Glycolysis of Gallbladder Cancer Cells[J]. Journal of Kunming Medical University, 2022, 43(12): 23-29. doi: 10.12259/j.issn.2095-610X.S20221206

miR-125b-5p调控HK2抑制胆囊癌细胞增殖和糖酵解

doi: 10.12259/j.issn.2095-610X.S20221206
基金项目: 陕西省自然科学基金资助项目(2020JM-439)
详细信息
    作者简介:

    张玮(1983~),男,陕西西安人,医学硕士,主治医师,主要从事肝胆胃肠肿瘤临床治疗工作

    通讯作者:

    张梁,E-mail:276282866@qq.com

  • 中图分类号: R735.8

miR-125b-5p Regulates HK2 to Inhibit Proliferation and Glycolysis of Gallbladder Cancer Cells

  • 摘要:   目的  研究miR-125b-5p通过HK2调控人胆囊癌细胞增殖和糖酵解的作用机制。  方法  分别在人胆囊癌细胞GBC-SD中转染NC mimic、miR-125b-5p mimic、miR-125b-5p mimic+pcDNA-NC、miR-125b-5p mimic+pcDNA-HK2。实时荧光定量聚合酶链式反应(Real Time Quantitative Polymerase Chain Reaction,RT-qPCR)检测miR-125b-5p和HK2 mRNA的表达,Western blot检测HK2和LDHA、PDK1的蛋白表达。细胞计数试剂盒-8(cell countingKit-8,CCK-8)检测细胞增殖活力,糖酵解相关试剂盒检测乳酸生成、葡萄糖消耗以及ATP生成。双荧光素酶报告基因实验对miR-125b-5p和HK2的靶向关系进行验证。  结果  miR-125b-5p在胆囊癌细胞系GBC-SD和NOZ(P < 0.001)以及组织(P < 0.01)中表达降低,且在GBC-SD细胞中低于NOZ细胞中。过表达miR-125b-5p可显著抑制GBC-SD细胞的增殖(P < 0.05)、葡萄糖消耗(P < 0.05)、乳酸(P < 0.001)和ATP的生成(P < 0.01)以及LDHA(P < 0.01)、PDK1(P < 0.001)、HK2(P < 0.0001)表达。starBase数据库和双荧光素酶报告基因实验证实miR-125b-5p靶向负调控HK2。过表达miR-125b-5p和HK2组中细胞的增殖(P < 0.01)、葡萄糖摄取(P < 0.05)、乳酸(P < 0.01)和ATP(P < 0.05)的生成以及LDHA(P < 0.05)、PDK1(P < 0.05)、HK2(P < 0.05)表达显著高于仅过表达miR-125b-5p组。  结论  过表达miR-125b-5p靶向HK2,抑制人胆囊癌细胞GBC-SD的增殖和有氧糖酵解。
  • 图  1  miR-125b-5p在胆囊癌细胞和组织中表达降低

    A:RT-qPCR检测miR-125b-5p的表达,与HGBEC组相比,****P < 0.0001;B:TCGA数据库预测miR-125b-5p胆囊癌组织和癌旁组织中的表达,与Normal组相比,**P < 0.01。

    Figure  1.  The expression of miR-125b-5p was decreased ingallbladder carcinoma cells and tissues

    图  2  过表达miR-125b-5p抑制GBC-SD细胞增殖和有氧糖酵解

    A:RT-qPCR检测miR-125b-5pmimic的转染效率;B:CCK-8检测细胞增殖活力;C:乳酸生成量检测;D:葡萄糖消耗量检测;E:ATP水平检测;F:Western blot检测LDHA、PDK1和的蛋白表达。HK2与NC mimic组相比,*P < 0.05,**P < 0.01,***P < 0.001,****P < 0.0001。

    Figure  2.  Over-expression of miR-125b-5p inhibited the proliferation and aerobic glycolysis in GBC-SD cell

    图  3  miR-125b-5p靶向负调控HK2

    A:starBase数据数据库预测miR-125b-5p和HK2的靶向结合位点;B:双荧光素酶实验验证靶向关系,与NC mimic组相比,**P < 0.01;C:RT-qPCR检测HK2在胆囊癌和胆囊上皮细胞系中的mRNA水平,与HGBEC组相比,****P < 0.0001;D:Western blot检测HK2在胆囊癌和胆囊上皮细胞系中的蛋白水平,与HGBEC组相比,****P < 0.0001;E:RT-qPCR检测过表达miR-125-5p对HK2 mRNA水平的影响,与NC mimic组相比,**P < 0.01;F:Western blot检测过表达miR-125-5p对HK2蛋白水平的影响,与NC mimic组相比,***P < 0.001;G-H:Western blot检测过表达miR-125-5p对HK2蛋白水平的影响,与NC mimic组相比,***P < 0.001。

    Figure  3.  miR-125b-5p targeted and negatively regulated HK2

    图  4  miR-125b-5p靶向HK2抑制GBC-SD细胞增殖和有氧糖酵解

    A:RT-qPCR检测HK2 mRNA表达;B:CCK-8检测细胞增殖活力;C:乳酸含量检测;D:葡萄糖消耗量检测;E:ATP水平检测;F和G:LDHA、PDK1和HK2的蛋白水平测定。与NC mimic组相比,**P < 0.01,***P < 0.001,****P < 0.0001;与miR-125b-5p mimic+pcDNA-NC组相比,P < 0.05,△△P < 0.01。

    Figure  4.  miR-125b-5p inhibited theproliferationandaerobic glycolysis in GBC-SD cellby targeting HK2

    表  1  引物序列

    Table  1.   Primer sequences

    基因名引物序列 (F:上游引物,R:下游引物,5′-3′)
    miR-125b-3p F:TCCCTGAGACCCTAACTTGTGA
    R:TCACAAGTTAGGGTCTCAGGGA
    U6 F:CGCTTCGGCAGCACATATAC
    R:AATATGGAACGCTTCACGA
    下载: 导出CSV
  • [1] Sharma A,Sharma K L,Gupta A,et al. Gallbladder cancer epidemiology,pathogenesis and molecular genetics:Recent update[J]. World J Gastroenterol,2017,23(22):3978-3998. doi: 10.3748/wjg.v23.i22.3978
    [2] Gong Y Q,Ni J L,Fang Q,et al. MiR-1231 enhances docetaxel sensitivity to gallbladder carcinoma cells by downregulating FOXC2[J]. Eur Rev Med Pharmacol Sci,2020,24(23):12116-12123.
    [3] Zheng Y,Liu P,Wang N,et al. Betulinic acid suppresses breast cancer metastasis by targeting GRP78-mediated glycolysis and ER stress apoptotic pathway[J]. Oxid Med Cell Longev,2019,2019:8781690.
    [4] Li J,Hu Z Q,Yu S Y,et al. CircRPN2 inhibits aerobic glycolysis and metastasis in hepatocellular carcinoma[J]. Cancer Res,2022,82(6):1055-1069. doi: 10.1158/0008-5472.CAN-21-1259
    [5] Arora S,Singh P,Tabassum G,et al. miR-16-5p regulates aerobic glycolysis and tumorigenesis of NSCLC cells via LDH-A/lactate/NF-κB signaling[J]. Life Sci,2022,304:120722. doi: 10.1016/j.lfs.2022.120722
    [6] Zhu Y,Li F,Wan Y,et al. Cancer-secreted exosomal miR-620 inhibits ESCC aerobic glycolysis via FOXM1/HER2 pathway and promotes metastasis[J]. Front Oncol,2022,12:756109. doi: 10.3389/fonc.2022.756109
    [7] Ren J,Li W,Pan G,et al. miR-142-3p modulates cell invasion and migration via PKM2-mediated aerobic glycolysis in colorectal cancer[J]. Anal Cell Pathol (Amst),2021,2021:9927720.
    [8] Zhai D,Li T,Ye R,et al. LncRNA LGALS8-AS1 promotes breast cancer metastasis through miR-125b-5p/SOX12 feedback regulatory network[J]. Front Oncol,2021,11:711684. doi: 10.3389/fonc.2021.711684
    [9] Mei L L,Wang W J,Qiu Y T,et al. miR-125b-5p functions as a tumor suppressor gene partially by regulating HMGA2 in esophageal squamous cell carcinoma[J]. PLoS One,2017,12(10):e0185636. doi: 10.1371/journal.pone.0185636
    [10] Hu B,Yang X B,Yang X,et al. LncRNA CYTOR affects the proliferation,cell cycle and apoptosis of hepatocellular carcinoma cells by regulating the miR-125b-5p/KIAA1522 axis[J]. Aging (Albany NY),2020,13(2):2626-2639.
    [11] Hua Q,Jin M,Mi B,et al. LINC01123,a c-Myc-activated long non-coding RNA,promotes proliferation and aerobic glycolysis of non-small cell lung cancer through miR-199a-5p/c-Myc axis[J]. J Hematol Oncol,2019,12(1):91. doi: 10.1186/s13045-019-0773-y
    [12] Randi G,Franceschi S,La Vecchia C. Gallbladder cancer worldwide:Geographical distribution and risk factors[J]. Int J Cancer,2006,118(7):1591-602. doi: 10.1002/ijc.21683
    [13] Sharma Y,Saini A K,Kashyap S,et al. Host miRNA and immune cell interactions:Relevance in nano-therapeutics for human health[J]. Immunol Res,2022,70(1):1-18. doi: 10.1007/s12026-021-09247-8
    [14] Jin F E,Xie B,Xian H Z,et al. Knockdown of miR-125b-5p inhibits the proliferation and invasion of gastric carcinoma cells by targeting RYBP[J]. Kaohsiung J Med Sci,2021,37(10):863-871. doi: 10.1002/kjm2.12425
    [15] Cao J Y,Wang B,Tang T T,et al. Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p53 in ischemic acute kidney injury[J]. Theranostics,2021,11(11):5248-5266. doi: 10.7150/thno.54550
    [16] Yang D,Zhan M,Chen T,et al. miR-125b-5p enhances chemotherapy sensitivity to cisplatin by down-regulating Bcl2 in gallbladder cancer[J]. Sci Rep,2017,7:43109. doi: 10.1038/srep43109
    [17] Wang J,Huang Q,Hu X,et al. Disrupting circadian rhythm via the PER1-HK2 axis reverses trastuzumab resistance in gastric cancer[J]. Cancer Res,2022,82(8):1503-1517.
    [18] Guo D,Tong Y,Jiang X,et al. Aerobic glycolysis promotes tumor immune evasion by hexokinase2-mediated phosphorylation of IκBα[J]. Cell Metab,2022,34(9):1312-1324.e6. doi: 10.1016/j.cmet.2022.08.002
    [19] Shi T,Ma Y,Cao L,et al. B7-H3 promotes aerobic glycolysis and chemoresistance in colorectal cancer cells by regulating HK2[J]. Cell Death Dis,2019,10(4):308.
    [20] Lu J, Zhen S, Tuo X, et al. Downregulation of DNMT3A attenuates the warburg effect, proliferation, and invasion via promoting the inhibition of miR-603 on HK2 in ovarian cancer[J]. Technol Cancer Res Treat, 2022, 21: 15330338221110668.
    [21] Xu Q L,Luo Z,Zhang B,et al. Methylation-associated silencing of miR-9-1 promotes nasopharyngeal carcinoma progression and glycolysis via HK2[J]. Cancer Sci,2021,112(10):4127-4138. doi: 10.1111/cas.15103
    [22] Chen J,Yu Y,Li H,et al. Long non-coding RNA PVT1 promotes tumor progression by regulating the miR-143/HK2 axis in gallbladder cancer[J]. Mol Cancer,2019,18(1):33. doi: 10.1186/s12943-019-0947-9
  • [1] 肖锦玲, 管雅玲, 朱森森, 庄梦婕, 苏丽萍, 蒲红伟.  HK2和VDAC1在二乙酰吗啡致心肌细胞凋亡中的作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240202
    [2] 尹小川, 尹瑞扬, 李冉华, 蔡方奇, 崔岳, 毕涛, 童兴和.  恶性胸膜间皮瘤细胞培养条件及CDKN2B对癌细胞的作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240105
    [3] 翟瑜如, 白艳, 李云云.  FGF2通过PERK/EIF2α/ATF4信号通路调节缺氧诱导的巩膜成纤维细胞增殖和胶原代谢, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20241004
    [4] 王玲, 秦祥川, 李金秋, 阿仙姑·哈斯木.  CD147通过AIM2炎症小体介导宫颈癌细胞焦亡和增殖, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240103
    [5] 张明, 于成龙, 曹锦鹏.  ZNF384调控GCLM对肝细胞癌转移的机制研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231108
    [6] 冯毅, 王小峰, 白西民, 姚胜, 党俊涛, 赵云洁, 蔡冰.  miR-149-5p通过MSH5/Wnt信号通路调控胶质瘤细胞恶性生物学行为, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230823
    [7] 蔡冰, 张伟, 刘静, 刘屹.  miR-218-5p通过调控LAYN抑制结肠癌发展的机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231206
    [8] 张晔琳, 马丽娅, 彭旭晖, 杨禾丰, 佘睿.  hsa-let-7a-5p调控牙周膜干细胞增殖及凋亡, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231028
    [9] 刘邦卿, 李剑锋, 刘晓辉, 张劲男, 梁金屏.  miR-196b靶向ERG促进肺腺癌的增殖和迁移, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231023
    [10] 张梁, 王保全, 雷喜锋, 王旭, 柯阳, 张玮.  miR-29c-3p/IGF1分子轴对肝星状细胞活化,增殖和凋亡的作用机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230926
    [11] 熊世锋, 邹浩.  胆囊癌淋巴结转移的危险因素分析, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220318
    [12] 赵斌, 段元鹏, 张国颖, 毕城伟, 杨李波, 施致裕, 杨勇, 张建朋, 高婷.  CircRNA EZH2通过调控miR-30c-5p促进前列腺癌细胞增殖和迁移, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220731
    [13] 王保全, 张伟, 田园, 雷喜锋, 王旭.  miR-142-5p通过CCND1调控胆囊癌细胞的增殖和转移, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220223
    [14] 杨兰, 贾霄, 姜奕彤, 崔琪, 刘光赐, 何颖红.  UBE2C基因沉默表达对人胃癌AGS细胞增殖和迁移的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210504
    [15] 雷喜锋, 侯峰强, 刘韬, 张伟.  FOXP2抑制人肝细胞癌增殖及其机制, 昆明医科大学学报.
    [16] 贾楠楠.  Gnaq对SH-SY5Y细胞增殖的作用及机制, 昆明医科大学学报.
    [17] 魏东.  脆性位点基因WWOX调控人胆囊癌细胞的体外增殖效应, 昆明医科大学学报.
    [18] 王海峰.  上调microRNA-101沉默EZH2基因表达对人膀胱癌T24细胞系增殖和凋亡的影响, 昆明医科大学学报.
    [19] 武斌.  大豆苷元对人乳牙牙髓干细胞增殖和成骨分化的影响, 昆明医科大学学报.
    [20] 李雄.  氧自由基在血管紧张素Ⅱ诱导ECV304细胞增殖中的作用, 昆明医科大学学报.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  3726
  • HTML全文浏览量:  2067
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-15
  • 网络出版日期:  2022-12-05
  • 刊出日期:  2022-12-25

目录

    /

    返回文章
    返回